Hard times and falling fertility in the United States

The text and figures of this short paper are below, and it’s also available as a PDF on SocArXiv, in more citable form. The Stata code and other materials are up as well, here. It’s pretty drafty — very happy to hear any feedback.

Preamble: When Sabrina Tavernise, Claire Cain Miller, Quoctrung Bui and Robert Gebeloff wrote their excellent New York Times piece, Why American Women Everywhere Are Delaying Motherhood, they elevated one important aspect of the wider conversation about falling fertility rates — the good news that women with improving economic opportunities often delay or forego having children because that’s what they’d rather do.

But it’s tricky to analyze this. Consider one woman they quote, who said, “I can’t get pregnant, I can’t get pregnant… I have to have a career and a job. If I don’t, it’s like everything my parents did goes in vain.” Or another, who is waiting to have children till she finishes a dental hygienist degree, who said, “I’m trying to go higher. I grew up around dysfunctional things. I feel like if I succeed, my children won’t have to.” If people can’t afford decent childcare (yet), or won’t have a job that pays enough to afford the parenting they want to provide until they finish a degree — so they delay parenthood while investing in their careers — are they not having a baby because there are promising opportunities, or because of economic insecurity? These are edge cases, I guess, but it seems like they extend to a lot of people right now. That’s what motivated me to do this analysis.


Hard times and falling fertility in the United States

by Philip N. Cohen

Abstract

Recent reports have suggested that falling fertility in the US since the 2008 recession is being driven by women with advantaged status in the labor market taking advantage of career opportunities. This paper takes issue with that conclusion. Although high incomes are associated with lower fertility in general, both in the cross section and over time (within and between countries), economic crises also lead to lower fertility. I offer a new descriptive analysis using data from the American Community Survey for 2000-2019. In the U.S. case, the fertility decline was widespread after the 2008 recession, but most concentrated among younger women. Although women with above average education have long had lower birth rates, the analysis shows that birth rates fell most for women in states with higher than average unemployment rates, especially among those with below average education. This is consistent with evidence that birth rates are falling, and births delayed, by economic insecurity and hardship.

Introduction

A New York Times article by Sabrina Tavernise et al. was titled, “Why American Women Everywhere Are Delaying Motherhood” (Tavernise et al. 2021). Although it did not provide a simple answer to the question, it did offer this: “As more women of all social classes have prioritized education and career, delaying childbearing has become a broad pattern among American women almost everywhere.” And it included a figure showing birth rates falling faster in counties with faster job growth. Reading that article, the writer Jill Filipovic concluded, “the women who are driving this downturn [in fertility] are those who have the most advantage and the greatest range of choices, and whose prospects look brightest” (Filipovic 2021). This paper takes issue with that conclusion.

Clearly, one driver of delayed childbearing is the desire to maximize career opportunities, but there is also the weight of uncertainty and insecurity, especially regarding the costs of parenting. Filipovic (2021) also wrote, “Children? In this economy?” These two tendencies appear to generate opposing economic effects: A strong economy gives mothers more rewarding opportunities that childrearing threatens (reducing fertility), while also providing greater economic security to make parenting more affordable and desirable (increasing fertility). These two pathways for economic influence on fertility trends are not easily separable in research – or necessarily exclusive in personal experience. In what follows I will briefly situate falling US fertility in the wider historical and global context, and then offer a descriptive analysis of the US trend in births from 2000 to 2019, focusing on relative education and state unemployment rates.

Review and context

Historically, economic growth and development have been key determinants of fertility decline (Herzer, Strulik, and Vollmer 2012; Myrskylä, Kohler, and Billari 2009), although by no means the only ones, and with coupling that is sometimes loose and variable (Bongaarts 2017). In the broadest terms, both historically and in the present, higher average incomes at the societal level are strongly associated with lower fertility rates; and this relationship recurs within the United States as well, as shown in the cross section in Figure 1.

Figure 1. Total fertility rate by GDP per capita: Countries and U.S. states, 2019. Note: Markers are scaled by population. US states linear fit weighted by population. Source: World Bank, US Census Bureau, National Center for Health Statistics, Bureau of Economic Analysis.

A lower standard of living is associated with higher birth rates. However, economic crises cause declines in fertility (Currie and Schwandt 2014), and this was especially true around the 2008 recession in the U.S. (Comolli 2017; Schneider 2015) and other high-income countries (Gaddy 2021). The crisis interrupted what had been a mild recovery from falling total fertility rates in high-income countries, leading to a decline from 1.74 in 2008 to 1.57 by 2019 (Figure 2).

Figure 2. Total fertility rate in the 10 largest high-income countries: 1990-2019. Note: Countries with at least $30,000 GDP per capita at PPP. Source: World Bank.

Figure 2 shows that the pattern of a peak around 2008 followed by a lasting decline is widespread (with the notable exceptions of Germany and Japan, whose TFRs were already very low), although the post-crisis decline was much steeper in the U.S. than in most other high income countries. Figure 3 puts the post-crisis TFR decline in global context, showing the change in TFR between the highest point in 2007-2009 and the lowest point in 2017-2019 for each country, by GDP per capita. (For example, the U.S. had a TFR peak of 2.12 in 2007, and its lowest point in 2017-2019 was 1.71 in 2019, so its score is -.41.) Fertility decline is positively associated with per capita income, as low-income countries continued the TFR declines they were experiencing before the crisis. However, among the high-income countries the relationship reversed (the inflection point in Panel A is $36,600, not shown). Thus, the sharp drop in fertility in the U.S. after the 2008 economic crisis is indicative of a larger pattern of post-crisis fertility trends. Globally, fertility is higher but falling in lower-income countries; fertility is lower in high-income counties, but fell further during the recent period of economic hardship or uncertainty. As a result of falling at both low and high ends of the economic scale, therefore, global TFR declined from 2.57 in 2007 to 2.40 in 2019 (by these World Bank data).

Figure 3. Difference in total fertility rate between the highest point in 2007-2009 and the lowest point in 2017-2019, by GDP per capita. Note: Markers scaled by population; largest countries labeled. Source: World Bank.

The mechanisms for these relationships – higher standard of living and rising unemployment both lead to lower fertility – defy simple characterization. The social scale (individual to global) may condition the relationship; there may be different effects of relative versus absolute economic wellbeing (long term and short term); development effects may be nonlinear (Myrskylä, Kohler, and Billari 2009); and the individual or cultural perception of these social facts is important as well (Brauner-Otto and Geist 2018). Note also that, as fertility rates fall with development, the question of having no children versus fewer has emerged as a more important distinction, which further complicates the interpretation of TFR trends (Hartnett and Gemmill 2020).

U.S. recessions

In the case of recent U.S. recessions, the negative impact on fertility was largest for young women. After the 2001 recession, birth rates only fell for women under age 25. In the wake of the more severe 2008 economic crisis, birth rates fell for all ages of women up to age 40 (above which rates continued to increase every year until 2020) although the drop was still steepest below age 25 (Cohen 2018). For the youngest women, births have continued to fall every year since, while those over age 35 saw some rebound from 2012 to 2019 (Figure 4). Clearly, during this period many women postponed births from their teens or twenties into their thirties and forties. The extent to which they will end up with lower fertility on a cohort basis depends on how late they continue (or begin) bearing children (Beaujouan 2020).

Figure 4. Annual change in U.S. births per 1,000 women, by age: 2001-2020. Source: National Center for Health Statistics.

Contrary to the suggestion that fertility decline is chiefly the result of improving opportunities for women, the pattern of delaying births is consistent with evidence that structural changes in the economy, the decline in goods-producing industries and the rise of less secure and predictable service industry jobs, are largely responsible for the lack of a fertility rebound after the 2008 recession, especially for Black and Hispanic women (Seltzer 2019). Lower education is also associated with greater uncertainty about having children among young people (Brauner-Otto and Geist 2018). For women in more precarious circumstances, especially those who are not married, these influences may be observed in the effect of unemployment rates on birth rates at the state level (Schneider and Hastings 2015). The available evidence supports the conclusion that the 2008 recession produced a large drop in fertility that did not recover before 2020 at least in part because the economic uncertainty it amplified has not receded – making it both a short-term and long-term event.

Birth rates recovered some for older women, however – over 30 or so – which is consistent with fertility delay. But this delay does not necessarily favor the opportunity cost versus economic constraint explanations. On one hand are people with higher levels of education (anticipated or realized) who plan to wait until their education is complete. On the other hand are those with less education who are most economically insecure, whose delays reflect navigating the challenges of relationship instability, housing, health care, childcare and other costs with lesser earning potential. This latter group may end up delaying either until they attain more security or until they face the prospect of running out of childbearing years. Both groups are deliberately delaying births partly for economic reasons, but the higher-education group is much more likely to have planned births while the latter have higher rates of unintended or mistimed births (Hayford and Guzzo 2016).

The opportunity cost of women’s childbearing, in classical models, is simply the earnings lost from time spent childrearing – the product of the hours of employment lost and the expected hourly wage (Cramer 1979). Although rising income potential for women has surely contributed to the long-run decline of fertility rates, in the U.S. that mechanism has not been determinative. Women experienced large increases in earnings for decades during which fertility rates did not fall. As the total fertility rate rose from its low point in 1976 (1.74) to the post-Baby Boom peak in 2007 (2.12) – defying the trend in many other high-income countries – the average weekly earnings of full-time working women ages 18-44 rose by 16% in constant dollars (Figure 5).

Figure 5. Median weekly earnings of full-time employed women ages 18-44, and total fertility rate. Source: Current Population Survey Annual Social and Economic Survey, and Human Fertility Database.

Clearly, other factors beyond lost earnings calculations are at work. However, there is no simple way to distinguish those who make direct cost comparisons, where investments in time and money take away from other needs and opportunities, from those who delay out of concern over future economic security, which weighs on people at all income levels and generates reluctance to make lifelong commitments (Pugh 2015). But the implications of these two effects are opposing. For people who don’t want to lose opportunities, a strong economy with abundant jobs implies lower fertility. For people who are afraid to commit to childrearing because of insecurity about their economic fortunes, a weak economy should decrease fertility. The experience of the post-2008 period provides strong evidence for the greater weight of the latter mechanism.

US births, 2000-2019

If opportunity costs were the primary consideration for women, one might expect an inverse relationship between job market growth and fertility rates: more jobs, fewer babies; fewer jobs, more babies. This is the pattern reported by Tavernise et al. (2021), who found that birthrates after the 2008 crisis fell more in counties with “growing labor markets” – which they attribute to the combination of improving opportunities for women and the high costs of childcare. However, their analysis did not attend to chronological ordering. They identified counties as having strong job growth if they were in the top quintile of counties for labor market percent change for the period 2007 to 2019, and compared them with counties in the bottom quintile of counties on the same measure with regard to birth rates (author correspondence). Thus, their analysis used a 2007-2019 summary measure to predict birth rates for each year from 1990 to 2019, making the results difficult to interpret.

In addition to using contemporaneous economic data, whereas Tavernise et al. (2021) used county-level birth rates, in this analysis I use individual characteristics and state-level data. I construct indicators of individual- and state-level relative advantage during the period before and after the 2008 economic crisis, from 2000 to 2019. Individual data are from the 2000-2019 American Community Survey (ACS) via IPUMS (Ruggles et al. 2021). I include in the analysis women ages 15-44, and use the fertility question, which asks whether they had a baby in the previous 12 months. I analyze this as a dichotomous dependent variable, using ordinary least squares regression. Results are graphed as marginal effects at the means, using Stata’s margins command. The sample size is 9,415,960 million women, 605,150 (6.4%) of whom had a baby in the previous year (multiple births are counted only once).

In models with controls, I control for age in five-year bins, race/ethnicity (White, Black, American Indian, Asian/Pacific Islander, Other/multiple-race, and Hispanic), citizenship (U.S.-born, born abroad to American parents, naturalized, and not a citizen), marital status (married, spouse absent, separated, divorced, widowed, and never married), education (less than high school, high school graduate, some college, and BA or higher degree), as well as (in some models) the state unemployment rate (lagged two years), and state fixed effects. State unemployment rates are from Local Area Unemployment Statistics (Bureau of Labor Statistics 2021). ACS person weights are used in all analyses.

For states, I use the unemployment rate in each state for each year, and divide the states at the median, so those with the median or higher unemployment for each year are coded as high unemployment states, and low unemployment otherwise (this variable is lagged two years, because the ACS asks whether each woman has had a birth in the previous 12 months, but does not specify the month of the birth, or the date of the interview). For individuals, the identification of economic advantage is difficult with the cross-sectional data I use here, because incomes are likely to fall in the year of a birth, and education may be determined endogenously with fertility as women age (Hartnett and Gemmill 2020), so income and education cannot simply be used to identify economic status. Instead, I identify women as low education if they have less than the median level of education for women of their age in their state for each year (using single years of age, and 26 categories of educational attainment), and high education otherwise. Thus, individual women in my sample are coded as in a high or low unemployment state relative to the rest of the country each year, and as having high or low education relative other women of their age and state and year. Using the ACS migration variable, I code women into the state they lived in the previous year, which is more likely to identify where they lived when they determined whether to have a baby (which also means I exclude women who were not living in the U.S. in the year before the survey).

Figure 6 shows the unadjusted probability of birth for women in high- and low-unemployment states for the period 2000-2019. This shows the drop in birth rates after 2008, which is steeper for women who live in high-unemployment states, especially before 2017. This is what we would expect from previous research on the 2008 financial crisis: a greater falloff in birth rates where the economy suffered more.

Figure 6. Probability of birth in the previous year: 2000-2019, by state unemployment relative to the national media (marginal effects at the means). Women ages 15-44. Based on state of residence in the previous year; unemployment lagged two years.

Next, I split the sample again by women’s own education relative to the median for those of the same age, year, and state. Those less than that median are coded as low education, those at or higher than the median are coded as high education. Figure 7 shows these results (again, unadjusted for control variables), showing that those with lower education (the top two lines) have higher birth rates throughout the period. After 2008, within both the high- and low-education groups, those in high-unemployment states had longer and steeper declines in birth rates (at least until 2019). The steepest decline is among low-education, high-unemployment women: those facing the greatest economic hardship at both the individual and state level. Finally, Figure 8 repeats the model shown in Figure 7, but with the control variables described above, and with state fixed effects. The pattern is very similar, but the differences associated with state unemployment are attenuated, especially for those with low education.

Figure 7. Probability of birth in the previous year: 2000-2019, by education relative to the age-state median, and state unemployment relative to the national media (marginal effects at the means). Women ages 15-44. Based on state of residence in the previous year; unemployment lagged two years.

Figure 8. Probability of birth in the previous year: 2000-2019, by education relative to the age-state median, and state unemployment relative to the national media, with controls for age, race/ethnicity, citizenship, marital status, and state fixed effects (marginal effects at the means). Women ages 15-44. Based on state of residence in the previous year; unemployment lagged two years.

Discussion

Although birth rates fell for all four groups of women in this analysis after the 2008 recession, these results reflect that paradoxical nature of economic trends and birth rates. Women with higher education (and greater potential earnings) have lower birthrates, consistent with the opportunity cost reasoning described in Tavernise et al. (2021) and elsewhere. However, women in states with higher unemployment rates – especially when they have high relative education – also have lower birthrates, and in these states saw greater declines after the 2008 crisis. This is consistent with the evidence of negative effects of economic uncertainty and stress. And it goes against the suggestion that stronger job markets drive down fertility rates for women with higher earning potential, at least in the post-2008 period. In the long run, perhaps, economic opportunities reduce childbearing by increasing job market opportunities for potential mothers, but in recent years this effect has been swamped by the downward pressure of economic troubles. US birth rates fell further in 2020, apparently driven down by the COVID-19 pandemic, which raised uncertainty – and fear for the future – to new heights (Cohen 2021; Sobotka et al. 2021). We don’t yet know the breakdown of the shifts in fertility for that year, but if the effects were similar to those of the 2008 economic crisis, we would expect to see greater declines among those who were most vulnerable.

References

Beaujouan, Eva. 2020. “Latest-Late Fertility? Decline and Resurgence of Late Parenthood Across the Low-Fertility Countries.” Population and Development Review 46 (2): 219–47. https://doi.org/10.1111/padr.12334.

Bongaarts, John. 2017. “Africa’s Unique Fertility Transition.” Population and Development Review 43 (S1): 39–58. https://doi.org/10.1111/j.1728-4457.2016.00164.x.

Brauner-Otto, Sarah R., and Claudia Geist. 2018. “Uncertainty, Doubts, and Delays: Economic Circumstances and Childbearing Expectations Among Emerging Adults.” Journal of Family and Economic Issues 39 (1): 88–102. https://doi.org/10.1007/s10834-017-9548-1.

Bureau of Labor Statistics. 2021. “States and Selected Areas:  Employment Status of the Civilian Noninstitutional Population, January 1976 to Date, Seasonally Adjusted.” 2021. https://www.bls.gov/web/laus/ststdsadata.txt.

Cohen, Philip N. 2018. Enduring Bonds: Inequality, Marriage, Parenting, and Everything Else That Makes Families Great and Terrible. Oakland, California: University of California Press.

———. 2021. “Baby Bust: Falling Fertility in US Counties Is Associated with COVID-19 Prevalence and Mobility Reductions.” SocArXiv. https://doi.org/10.31235/osf.io/qwxz3.

Comolli, Chiara Ludovica. 2017. “The Fertility Response to the Great Recession in Europe and the United States: Structural Economic Conditions and Perceived Economic Uncertainty.” Demographic Research 36 (51): 1549–1600. https://doi.org/10.4054/DemRes.2017.36.51.

Cramer, James C. 1979. “Employment Trends Ofyoung Mothers and the Opportunity Cost of Babies in the United States.” Demography 16 (2): 177–97. https://doi.org/10.2307/2061137.

Currie, Janet, and Hannes Schwandt. 2014. “Short- and Long-Term Effects of Unemployment on Fertility.” Proceedings of the National Academy of Sciences 111 (41): 14734–39. https://doi.org/10.1073/pnas.1408975111.

Filipovic, Jill. 2021. “Opinion | Women Are Having Fewer Babies Because They Have More Choices.” The New York Times, June 27, 2021, sec. Opinion. https://www.nytimes.com/2021/06/27/opinion/falling-birthrate-women-babies.html.

Gaddy, Hampton Gray. 2021. “A Decade of TFR Declines Suggests No Relationship between Development and Sub-Replacement Fertility Rebounds.” Demographic Research 44 (5): 125–42. https://doi.org/10.4054/DemRes.2021.44.5.

Hartnett, Caroline Sten, and Alison Gemmill. 2020. “Recent Trends in U.S. Childbearing Intentions.” Demography 57 (6): 2035–45. https://doi.org/10.1007/s13524-020-00929-w.

Hayford, Sarah R., and Karen Benjamin Guzzo. 2016. “Fifty Years of Unintended Births: Education Gradients in Unintended Fertility in the US, 1960-2013.” Population and Development Review 42 (2): 313–41.

Herzer, Dierk, Holger Strulik, and Sebastian Vollmer. 2012. “The Long-Run Determinants of Fertility: One Century of Demographic Change 1900–1999.” Journal of Economic Growth 17 (4): 357–85. https://doi.org/10.1007/s10887-012-9085-6.

Myrskylä, Mikko, Hans-Peter Kohler, and Francesco C. Billari. 2009. “Advances in Development Reverse Fertility Declines.” Nature 460 (7256): 741–43. https://doi.org/10.1038/nature08230.

Pugh, Allison J. 2015. The Tumbleweed Society: Working and Caring in an Age of Insecurity. 1 edition. New York, NY: Oxford University Press.

Ruggles, Steven, Sarah Flood, Sophia Foster, Ronald Goeken, Jose Pacas, Megan Schouweiler, and Matthew Sobek. 2021. “IPUMS USA: Version 11.0 [Dataset].” 2021. doi.org/10.18128/D010.V11.0.

Schneider, Daniel. 2015. “The Great Recession, Fertility, and Uncertainty: Evidence From the United States.” Journal of Marriage and Family 77 (5): 1144–56. https://doi.org/10.1111/jomf.12212.

Schneider, Daniel, and Orestes P. Hastings. 2015. “Socioeconomic Variation in the Effect of Economic Conditions on Marriage and Nonmarital Fertility in the United States: Evidence From the Great Recession.” Demography 52 (6): 1893–1915. https://doi.org/10.1007/s13524-015-0437-7.

Seltzer, Nathan. 2019. “Beyond the Great Recession: Labor Market Polarization and Ongoing Fertility Decline in the United States.” Demography 56 (4): 1463–93. https://doi.org/10.1007/s13524-019-00790-6.

Sobotka, Tomas, Aiva Jasilioniene, Ainhoa Alustiza Galarza, Kryštof Zeman, Laszlo Nemeth, and Dmitri Jdanov. 2021. “Baby Bust in the Wake of the COVID-19 Pandemic? First Results from the New STFF Data Series.” SocArXiv. https://doi.org/10.31235/osf.io/mvy62.

Tavernise, Sabrina, Claire Cain Miller, Quoctrung Bui, and Robert Gebeloff. 2021. “Why American Women Everywhere Are Delaying Motherhood.” The New York Times, June 16, 2021, sec. U.S. https://www.nytimes.com/2021/06/16/us/declining-birthrate-motherhood.html.

Pandemic Baby Bust situation update

[Update: California released revised birth numbers, which added a trivial number to previous months, except December, where they added a few thousand, so now the state has a 10% decline for the month, relative to 2019. I hadn’t seen a revision that large before.]

Lots of people are talking about falling birth rates — even more than they were before. First a data snapshot, then a link roundup.

For US states, we have numbers through December for Arizona, California, Florida, Hawaii, and Ohio. They are all showing substantial declines in birth rates from previous years. Most dramatically, California just posted December numbers, and revised the numbers from earlier months, now showing a 19% 10% drop in December. After adding about 500 births to November and a few to October, the drop in those two months is now 9%. The state’s overall drop for the year is now 6.2%. These are, to put it mildly, very larges declines in historical terms. Even if California adds 500 to December later, it will still be down 18%. Yikes. One thing we don’t yet know is how much of this is driven by people moving around, rather than just changes in birth rates. California in 2019 had more people leaving the state (before the pandemic) than before, and presumably there have been essentially no international immigrants in 2020. Hawaii also has some “birth tourism”, which probably didn’t happen in 2020, and has had a bad year for tourism generally. So much remains to be learned.

Here are the state trends (figure updated Feb 18):

births 18-20 state small multiple by month

From the few non-US places that I’m getting monthly data so far, the trend is not so dramatic. Although British Columbia posted a steep drop in December. I don’t know why I keep hoping Scotland will settle down their numbers… (updated Feb 18):

births countries 18-20 small multiple by month

Here are some recent items from elsewhere on this topic:

  • That led to some local TV, including this from KARE11 in Minneapolis:

Good news / bad news clarification

There’s an unfortunate piece of editing in the NBCLX piece, where I’m quoted like this: “Well, this is a bad situation. [cut] The declines we’re seeing now are pretty substantial.” To clarify — and I said this in the interview, but accidents happen — I am not saying the decline in births is a bad situation, I’m saying the pandemic is a bad situation, which is causing a decline in births. Unfortunately, this has slipped. As when the Independent quoted the piece (without talking to me) and said, “Speaking to the outlet, Philip Cohen, a sociologist and demographer at the University of Maryland, called the decline a ‘bad situation’.”


The data for this project is available here: osf.io/pvz3g/. You’re free to use it.


For more on fertility decline, including whether it’s good or bad, and where it might be going, follow the fertility tag.


Acknowledgement: We have lots of good conversation about this on Twitter, where there is great demography going on. Also, Lisa Carlson, a graduate student at Bowling Green State University, who works in the National Center for Family and Marriage Research, pointed me toward some of this state data, which I appreciate.

COVID-19 Baby Bust update and data

Joe Pinsker at the Atlantic has a piece out on the coming (probable) baby bust. In it he reviews existing evidence for a coming decline in births as a result of the pandemic, especially including historical comparisons and Google search data. Could we see this already?

Pinsker writes:

The baby bust isn’t expected to begin in earnest until December. And it could take a bit longer than that, Sarah Hayford, a sociologist at Ohio State University, told me, if parents-to-be didn’t adjust their plans in response to the pandemic immediately back in March, when its duration wasn’t widely apparent.

If people immediately changed their plans in February, we might see a decline in births in October, but Hayford is right that’s early. And what about September, for which I’ve already observed declining births in Florida and California? If people who were pregnant already in January had miscarriages or abortions because of the pandemic, that would result in fewer births in September, but how big could that effect be? So maybe the Florida and California data are flukes, or data errors, or lots of pregnant people left those states and gave birth elsewhere (or pregnant people who normally come didn’t arrive). Perhaps more likely is that 2020 was already going to be a down year. As I told Pinsker:

“It might actually be that we were already heading for a record drop in births this year … If that’s the case, then birth rates in 2021 are probably going to be even more shockingly low.”

Anyway, we’ll find out soon enough. And to that end I’ve started assembling a dataset of monthly births where I can find them, which so far includes Florida, California, Oregon, Arizona, North Carolina, Ohio, Hawaii, Sweden, Finland, Scotland, and the Netherlands, to varying degrees of timeliness. As of today we have October data for some of them:

As of now Florida and California remain the strongest cases for a pandemic effect. But they are also both likely to add some more births to October (in November’s report, California increased the September number by 3%).

Anyway, lots of speculation while we’re killing time. You can get the little dataset here on the Open Science Framework: https://osf.io/pvz3g/. Check the date on the .csv or .xlsx file to see what I last updated it. I’ll add more countries or states if I find out about them.

Fertility rate implications explained

(Sorry for the over-promising title; thanks for the clicks.)

First where we are, then projections, with figures.

For background: Caroline Hartnett has an essay putting the numbers in context. Leslie Root has a recent piece explaining how these numbers are deployed by white supremacists (key point: over-hyping the downside of lower fertility rates has terrible real-world implications).

Description

The National Center for Health Statistics released the 2018 fertility numbers yesterday, showing another drop in birth rates, and the lowest fertility since the Baby Boom. We are continuing a historical process of moving births from younger to older ages, which shows up as fewer births in the transition years. I illustrate this each year by updating this figure, showing the relative change in birth rates by age since 1989:

change in birthrates by age 1989-2016.xlsx

Historically, postponement was associated with reduction in lifetime births — which is what really matters for population trends. When people were having lots of children, any delay reduced the total number. With birth rates around two per woman, however, there is a lot more room for postponement — a lot of time to get to two. (At the societal level, both reduction and postponement are generally good for gender equality, if women have good health and healthcare.)

This means that drops in what we demographers call “period” fertility (births right now) are not the same as drops in “completed” fertility (births in a lifetime), or falling population in the long run. The period fertility measure most often used, the unfortunately named total fertility rate (TFR), is often misunderstood as an indicator of how many children women will have. It is actually how many births they are having right now, expressed in lifetime terms (I describe it in this video, with instructions).

Lawrence Wu and Nicholas Mark recently showed that despite several periods of below “replacement” fertility (in terms of TFR), no U.S. cohort of women has yet finished their childbearing years with fewer than two births per woman. Here is the completed fertility of U.S. women, by year of birth, as recorded by the General Social Survey. By this account, women born in the early 1970s (now in their late-forties by 2018) have had an average of 2.3 children.

Stata graph

Whether our streak of over-two completed fertility persists depends on what happens in in the next few years (and of course on immigration, which I’ll get to).

Last year at this time I summed up the fertility situation and concluded, “sell stock now,” because birth rates fell for women at all ages except over 40. That kind of postponement, I figured, based on history, reflected economic uncertainty and thus was an ill omen for the economy. The S&P 500 is up 5% since then, which isn’t bad as far as my advice goes. And I’m still bearish based on these birth trends (I bet I’ll be right before fertility increases).

Projection

It is very hard to have an intuitive sense of what demographic indicators mean, especially for the future. So I’ve made some projections to show the math of the situation, to get the various factors into scale. My point is to show what the current (or future) birth rates imply about future growth, and the relative role of immigration.

These projections run from 2016 to 2100. I made them using the Census Bureau’s Demographic Analysis and Population Projection System software, which lets me set the birth, death, and migration rates.* I started with the 2016 population because that’s the most recent set of life tables NCHS has released for mortality. Starting in 2018 I apply the current age-specific birth rates.

First, the most basic projection. This is what would happen if birth rates stayed the same as those in 2018 and we completely cut off all immigration (Projection A), or if we had net migration running at the current level of just under +1 million each year, using Census estimates for age and sex of the migrants (Projection B).

projections.xlsx

From the 2016 population of 323 million, if the birth rates by age in 2018 were locked in, the population would peak at 329 million in 2029 and then start to decline, reaching 235 million by 2100. However, if we maintain current immigration levels (by age and sex), the population would keep growing till 2066 before tapering only slightly. (Note this assumes, unrealistically, that the immigrants and their children have the same birth rates as the current population; they have generally been higher.) This the most important bottom line: there is no reason for the U.S. to experience population decline, with even moderate levels of immigration, and assuming no rebound in fertility rates. Immigration rates do not have to increase to maintain the current population indefinitely.

Note I also added the percentage of the population over age 65 on the figure. That number is about 16% now. If we cut off immigration and maintain current birth rates, it would rise to 25% by the end of the century, increasing the need for investment in old age stuff. If we allow current migration to continue, that growth is less and it only reaches 23%. This is going up no matter what.

To show the scale of other changes that we might expect — again, not predictions — I added a few other factors. Here are the same projections, but adding a transition to higher life expectancies by 2080 (using Japan’s current life tables; we can dream). In these scenarios, population decline is later and slower (and not just at older ages, since Japan also has lower child mortality).

projections.xlsx

Under these scenarios, with rising life expectancies, the old population rises more, to between 27% and 29%. Generally experts assume life expectancies will rise more than this, but that’s the assumed direction (now, unbelievably, in doubt).

Finally, I’ve been assuming birth rates will not fall further. If what we’re seeing now is fertility postponement, we wouldn’t expect much more decline. But what if fertility keeps falling? Here is what you get with the assumptions in Projection D, plus total fertility rates falling to 1.6, either by 2030 or 2050. As you can see, in the 1.6 to 1.8 range, the effects on population size aren’t great in this time scale.

projections.xlsx

Conclusion: We are on track for slowing population growth, followed by a plateau or modest decline, with population aging, by the end of the century, and immigration is a bigger question than fertility rates, for both population growth and aging.

Perspective

In a global context where more people want to come here than want to leave (to date), worrying about low birth rates tends to lend itself to myopic, religious, or racist perspectives which I don’t share. I don’t think American culture is superior, whites are in danger of extinction, or God wants us to have more children.

I do not agree with Dowell Myers, who was quoted yesterday as saying, “The birthrate is a barometer of despair.” That even as some people are having fewer children than they want, or delaying childbearing when they would rather not. In the most recent cohort to finish childbearing, 23% gave an “ideal number of children for a family to have” that was greater than the number they had, and that number has trended up, as you can see here:

Stata graph

Is this rising despair? As individuals, people don’t need to have children any more. Ideally, they have as many as they want, when they want, but they are expensive and time consuming and it’s not surprising people end up with fewer than they think “ideal.” Not to be crass about it, but I assume the average person also has fewer boats than they consider ideal.

And how do we know what is the right level of fertility for the population? As Marina Adshade said on Twitter, “Did women actually have a desire for more children in the past? Or did they simply lack the bargaining power and means to avoid births?”

However, to the extent that low birth rates reflect frustrated dreams, or fear and uncertainty, or insufficient support for families with children, of course those are real problems. But then let’s name those problems and address them, rather than trying to change fertility rates or grow the population, which is a policy agenda with a very bad track record.


* I put the DAPPS file package I created on the Open Science Framework, here. If you install DAPPS you can open this and look at the projections output, with graphs and tables and population pyramids.

Fertility trends explained, 2017 edition

Not really, but some thoughts and a bunch of figures on the 2017 fertility situation.

There was a big drop in the U.S. fertility rate in 2017. As measured by the total fertility rate (TFR), which is a projection of lifetime births for the average woman based on one year’s data, the drop was 3.1%, from 1.82 projected births per woman to 1.76. (See this measure explained, and learn how to calculate it yourself, in my blockbuster video, “Total Fertility Rate.”) To put that change in perspective, here is the trend in TFR back to 1940, followed by a plot of the annual changes since 1971:

tfr4017

tfrchanges

That drop in 2017 is the biggest since the last recession started. In fact, we have seen no drop that big that’s not associated with a time of national economic distress, at least since the Baby Boom. In 2010, I noted that the drop in fertility at that time preceded the official start of the recession and the big unemployment spike. There is now some more systematic evidence (pointed out by Karen Benjamin Guzzo) that fertility falls before economic indicators turn down. Which makes this New York Times headline a little funny, “US Births Hit a 30-Year Low, Despite Good Economy.” This is a pretty solid warning sign, although not definitive, of an economic downturn coming in the next year or so. (On the other hand, maybe it’s a Trump effect, as people are just freaking out and not thinking positively about the future; something to think about.)

Whatever the role of immediate economic conditions, the long-term trend is toward later births, which is generally going to mean fewer births — both because people who want later births tend to want fewer births, and because some people run out of time if they start late. And that is not wholly separable from economic factors, of course. People (especially women) delay childbearing to improve their economic situation, as they improve their economic situation when they delay births (if they have the right suite of economic opportunities). To show this trend, I’ve been updating this figure for a few years (you’ll find it, and a description, in my book Enduring Bonds).

change in birthrates by age 1989-2016.xlsx

The real reason I made this figure was to highlight the interconnected nature of teen births. Birth rates for teens have fallen dramatically, but it’s been along with drops among younger women generally, and increases among older women — it’s about delaying births overall. Note, however, that 2017 is the first time since the depths of the last recession that birth rates fell for all age groups except women over age 40.

So, sell stock now. But it is hard to know for sure what’s a local temporal reaction and what’s just the way things are going nowadays. For that it’s useful to compare the U.S. to other countries. The next figure shows the U.S. and 15 other hand-picked countries, from World Bank data. Rising fertility in the decade before the last recession wasn’t so unusual. We are a little like Spain and France in this figure, who had rising fertility then and falling now. But Germany and Japan are still rising, at least through 2016. All this is at below-replacement levels (about 2.0), meaning eventually these rates lead to population decline, in the absence of immigration. The figure really shows the amazing fertility transformation of the last half century, especially in giant countries like China, India, and Brazil. Who would have thought we’d live to see Brazil have lower fertility rates than the U.S.? It’s been that way for more than a decade (click to enlarge).

country fertilitiy trends.xlsx

Anyway, it’s my position that our below-replacement fertility levels are themselves nothing to worry about at present. There are still lots of people who want to move here (or, there were before Trump). And we can live with low fertility for a long time before the population starts to decline in a meaningful way. Eventually it will be a good idea to stop perpetual population growth anyway, so we may as well start working on it. This is better than trying to shape domestic policy to increase birth rates.

That said, there is an argument that Americans are having fewer children than they want to because of our stone age work-family policies, especially poor family leave support and the high costs of good childcare. I’m sure that’s happening to some degree, but it’s still the case that more privileged people, who should be able to overcome those things more readily — people with college degrees and Whites — have lower fertility rates than people who are getting squeezed more. People who assume their kids are going to college are naturally concerned with rising higher education costs, both their own loan payments and their kids’ future payments. So it’s a mixed bag story. Here are the predictors of childbearing for women ages 15-44 in the 2016 American Community Survey. These are the probabilities of having had a birth in the previous 12 months, estimated (with logistic regression) at the mean of all the variables shown.*

birth model simple 2016.xlsx

Interesting that there’s only a small foreign-born fertility edge in this multivariate model. In the unadjusted data, 7.4% of foreign-born versus 6.0% of U.S.-born women had a baby, but that’s mostly accounted for by their age, education, and race/ethnicity.

To summarize: 2017 was a big year for fertility decline (at all but the highest ages), the economy is probably about to tank, and the U.S. fertility rate is still relatively high for our income level, especially for racial-ethnic minorities.

Happy to have your thoughts in the comments. For more, check the fertility tag.


* Here’s the Stata code for the regression analysis. It’s just some simple recodes of the ACS data from IPUMS.org. Start with a file of women ages 15-44, with the variables you see here, and then do this to it:

recode educd (0/61=1) (62/64=2) (65/90=3) (101/116=4), gen(edcat)
label define edlbl 1 "Less than high school"
label define edlbl 2 "High school graduate", add
label define edlbl 3 "Some college", add
label define edlbl 4 "BA or higher", add
label values edcat edlbl
gen raceth=race
replace raceth=4 if race==5 | race==6 /* now 4 is all API */
replace raceth=5 if hispan>0
drop if race>5
label define raceth_lbl 1 "White"
label define raceth_lbl 2 "Black", add
label define raceth_lbl 3 "AIAN", add
label define raceth_lbl 4 "API", add
label define raceth_lbl 5 "Hispanic", add
label values raceth raceth_lbl
egen agecat=cut(age), at(15(5)50)
gen forborn=citizen!=0
gen birth=fertyr==2
logit birth i.agecat i.raceth i.forborn i.edcat i.marst [weight=perwt]
margins i.agecat i.raceth i.forborn i.edcat i.marst

Is there sex selection among Asian immigrants in the US?

There is a 2008 paper reported in the New York Times in 2009, which found skewed sex ratios among children of immigrants from China, Korea, and India, if their older siblings were girls, using the 2000 Census. The implication was that some parents were using IVF or abortion to select boy children if their first two were girls — as is the case in their home countries. There has been some other research on this from the early 2000s, but I haven’t seen it updated since then.

I took a quick stab at it, but don’t have time right now to pursue it more thoroughly. So here’s the quick answer I got, and I shared my data, code, and results in an Open Science Framework project, here. I hope someone will be interested and pursue it further (using my approach or not). The files there include all different ethnic/racial groups.

This is preliminary.

Using the American Community Survey data from 2010-2015, from IPUMS.org, I took U.S.-born children ages 0-5, whose parents were both born in China, Korea, or India and both were present in the household. I counted the sex of any present siblings under age 15 (excluding step- and adopted children). Then I restricted the data to those with 2 older siblings, and compared the sex ratios among those who had 0 or 1 older sister to those who had 2 older sisters. I did this in a logistic regression controlling for individual years of age, and using ACS person weights. There are judgment calls to make about age, siblings, data and other issues. The older you get the more likely you are to have kids moving out in a way that is not sex-neutral (for example, if parents with girls are more or less likely to divorce), and so on. Should parents be matched on immigration status, siblings born abroad included, why the years 2010-2015, and so on. This is what I mean by preliminary. But these results are interesting enough to prompt me to post them and encourage discussion and more analysis.

Here’s what I got:

sex selection.xlsx

The sex differences between those with 0/1 older sister and 2 older sisters are not statistically significant at p.<.05 in each of the three groups, but they are for the combined set (.046). These comparison involve a few hundred cases. Here are the unweighted, unadjusted results:

sexratiosunweighted

As you can see, just a few families intervening to choose boys — or some other force rearranging the living arrangements, or survival, of children and families, and the difference would not hold. Still, I think it’s worth pursuing. Maybe someone already has. If you decide to get into it, feel free to use this stuff, and let me know what you come up with!

How do Black-White parents identify their children?

In 2015 the American Community Survey yields an estimate of 66,913 infants who have one Black parent and one White parent present in the household. (Either parent may be multiracial, too.)

What is the race of those infants? 73% of them were identified as both White and Black by whoever filled out the Census form.

bwinfants

(Note “other” doesn’t mean they specified “other,” it just means they used some other combination of races.)

These are children age 0 living with both parents, so it’s a pretty good bet they’re mostly biological parents, though some are presumably adopted. This is based on a sample of 507 such infants. If you pooled some years of ACS there is plenty to study here. Someone may already have done this – feel free to post in the comments.

That’s it, just FYI.

If the National Marriage Project told you it was going to rain, would you bring an umbrella?

Why do academics and journalists lend legitimacy to the National Marriage Project?

The Centers for Disease Control: You bought that.
The Centers for Disease Control: You bought that.

I today’s New York Times Week in Review, Andrew Cherlin offers this:

Having a child outside of marriage has also become common. According to a report by the National Marriage Project at the University of Virginia, 47 percent of American women who give birth in their 20s are unmarried at the time.

It took me 3 minutes to find the the 2010 report on birth data from the National Center for Health Statistics (NCHS), a branch of the Centers for Disease Control, and another 1/2 minute to locate the table with this information, which is table 15. Because of my weakness in algebra, it took me another 5 minutes to turn the number of babies born to unmarried women in the age range 20-24 (600,833) and in the age range 25-29 (384,865) and the percent unmarried that those represented (63.1% and 33.9%, respectively), into the total births to women in their 20s (2,087,487) and the percentage of all those to unmarried women (47.2%).

The New York Times paid for that statistic through taxes, which its government has provided. So why publish an essay by a sociologist with a named chair crediting the National Marriage Project, a right-wing front run by the discredited Brad Wilcox on behalf of big-money Christian conservatives? (In other news, the Heritage Foundation reported that the unemployment rate in February was 7.7%).

Maybe the media establishment simply doesn’t know a simple government statistic when they see one. But they see the university label and fancy website, and guy with the (implied) elbow patches, and they think the number is more complicated than it looksRather than hire a qualified unpaid intern to check facts and credit them to their actual sources, maybe they just trust the experts they rely on. (This is the David Brooks strategy.)

With resources for journalism and social science research on the decline, and foundation money playing a growing role in providing information to the media, this is predictable – but still lamentable.

Yes, mothers and fathers still exist

On FamilyScholars.org, which (having retreated on opposing homogamous marriage) is busy promoting its “new conversation on marriage,” Elizabeth Marquardt writes: “Where do babies come from? The state of New York seems unsure.”

Her link to a “report” is to one of those “you wouldn’t believe what my friend saw” posts on the Christian conservative site First Things:

A friend’s wife recently gave birth. He reports that the New York birth certificate asks for the sex of the mother, and the sex of the father.

It goes on to mock people who think seriously about sex and gender. And so the thing starts spreading around the religious-conservative sky-is-falling blogosphere.

shock_horror_3

I’m not too embarrassed to say I spent 15 minutes trying to look this up. Live and learn.

It’s hard to find information about birth certificates, because everything online keeps steering you to ways to order birth certificates, not create them. But, in New York state it appears there is a state system, and a state system excluding New York City. On the New York City site, there is an Electronic Birth Registration System, described here. It asks for a lot of information about the mother and father, but not their sex or gender.

I didn’t find the equivalent for the rest of the state, but the state’s Department of Health reports that they follow National Center of Health Statistics (NCHS) guidelines, which seem to refer to this revised birth certificate recording form, which was revised in 2003. In addition to health information, it records the mother’s and father’s marital status (mother only), country of birth, education, Hispanic origin, and race. The mother is “the woman who gave birth to, or delivered the infant.”

The only mention of sex (or gender) pertains to the child: “Print or type whether the infant is male, female or if the sex of the infant is not yet determined.” And “not yet determined” is a temporary state, as the recording instructions clarify:

An N code for “not yet determined” should not be allowed for any record in the file at the time the file is closed. NCHS will query states to obtain the sex of the infant for all records still retaining the N code at the time the file is closed.

 

Births to mothers in their forties are less common now than in the old days

In my post the other day I suggested that, when it comes to children’s health, mothers’ health is a bigger issue than mothers’ (advancing) age when they give birth. I was motivated to post it by the widespread discussion of Judith Shulevitz’s essay in the New Republic, “How Older Parenthood Will Upend American Society” — discussion that has continued with today’s On Point (which I haven’t heard yet), including the author Elizabeth Gregory, who has written Ready: Why Women Are Embracing the New Later Motherhood (which I haven’t read yet).

In the comments, several people (Reeve Vannamen and relfal) brought up the issue of later births in the olden days (before 1970). We need to think about two different issues: having first children at a later age, and having any (or many) children at a later age. For some questions of children’s health – especially the sperm-mutation issue with autism – I don’t think it matters: an older-age birth is an older age birth. The same goes for the angst over whether children will know their grandparents, whether parents will be too old to take them to soccer practice, and so on.

On the other hand, “starting a family” at an older age (because, remember, it’s not a “family” until you have kids), is a different issue, with its own implications for total fertility rates, the age composition of the population, etc.

Both having any children and having first children at older ages have been increasing in recent decades, but having any children at older ages is not historically unprecedented. Here are the birth rates for women ages 40-44, from 1940 to 2011, along with the percentage of all children born to those women from 1960-2010:

maternal-age-40-11

Sources: Birth rates 1940-1969, 1970-2010, 2011; Percent of births 1960-1980, 1980-2008.

Birth rates to women ages 40-44 are still substantially lower than they were in the olden days. So the number of kids whose parents will be over 60 when the kids come back to live with them after college is lower now despite an increase for 30 years.

On the other hand, the percentage of kids born to older mothers has surpassed those rates, because these are more often first or second, rather than third or fourth or fifth children. Put another way, the chance that women will have their first, and possibly only, baby at an older age has increased since 1960. While the overall birth rate for older women is still lower than it was in 1960, the first-birth rate is much higher. Here is the birth rate among women with no previous births, for those aged 35, 40 and 45, from 1960 to 2005:

first birth rates 60-05

Source: Table 4 on this page.

In 1960, only 4% of women who reached age 35 without having a baby had one that year. They probably weren’t just delaying their childbearing intentionally or putting off finding a mate while they pursued their careers. On the other hand, by 2005 almost 9% of those who reached age 35 without having a baby had one that year. The late first birth has become much more common.

Now if you go back to the promo blurb for On Point, you see how the issues are jumbled together:

American parents are having kids old and older. Look around. Are those two that child’s parents? Or its grandparents? It is very often hard to know these days. In many ways, this has been liberating. Twenty-somethings with a child-free, diaper-free decade of youth. People with time and space to start careers. But there is a price, and it’s becoming clearer. Older parents juggling kid’s soccer and their own aches and pains. Kids who won’t know their grandparents. Parents who won’t know their grandkids. And a baby bust.

The hardships faced by older parents are nothing new, but parents used to have more kids around when they went through them. It’s good to keep an eye on the issues separately.

Note: there is some more background and analysis in my working paper: here.