Tag Archives: demography

For social relationships outside marriage

Stephanie Coontz has a great piece in tomorrow’s New York Times titled, “For a Better Marriage, Act Like a Single Person.” From her intro:

Especially around Valentine’s Day, it’s easy to find advice about sustaining a successful marriage, with suggestions for “date nights” and romantic dinners for two. But as we spend more and more of our lives outside marriage, it’s equally important to cultivate the skills of successful singlehood. And doing that doesn’t benefit just people who never marry. It can also make for more satisfying marriages.

From there she develops the case with, as usual, a lot of the right research. Well worth a read.

Stephanie used two empirical bits from my work:

No matter how much Americans may value marriage, we now spend more time living single than ever before. In 1960, Americans were married for an average of 29 of the 37 years between the ages of 18 and 55. That’s almost 80 percent of what was then regarded as the prime of life. By 2015, the average had dropped to only 18 years.

In many ways, that’s good news for marriages and married people. Contrary to some claims, marrying at an older age generally lowers the risk of divorce. It also gives people time to acquire educational and financial assets, as well as develop a broad range of skills — from cooking to household repairs to financial management — that will stand them in good stead for the rest of their lives, including when a partner is unavailable.

The first figure, the average years spent in marriage between the ages of 18 and 55 is very easy to calculate. You just sum the proportion of people married at each age. Here’s what it looks like, comparing 1960 (from the decennial Census) and 2015 (from the American Community Survey), both from IPUMS.org (click to enlarge):

YearsMarried

I think it’s a nice, simple way to show the declining footprint of marriage in American life. (I first did this, and described in the rationale, in 2010.)

The bit about older age at marriage being associated with lower odds of divorce is from this post. Here’s the result, showing odds of divorce in one year by age at marriage, with controls for duration, education, race/ethnicity, and nativity, for women in their first marriages (click to enlarge):
Divorce by age at marriage

There’s more discussion in the post, as well as in this followup post, which has this cool figure, where red is the highest odds of divorce and green is the lowest, and the axes are years married and age at marriage (click to enlarge):

Divorce By Age And Duration


My new book is out! Enduring Bonds: Inequality, Marriage, Parenting, and Everything Else That Makes Families Great and Terrible. Available all the usual places, plus here at the University of California Press, where Chapter 1 is available as a sample, and where instructors can request a review copy.

Leave a comment

Filed under Research reports

Data analysis: Are older newlyweds saving marriage?

COS open data badgeCOS Open Materials badge


Is the “institution” still in decline if the incidence of marriage rebounds, but only at older ages?

In my new book I’ve revisited old posts and produced this figure, which shows the refined marriage rate* from 1940 to 2015, with a discussion of possible futures:

f15

The crash scenario – showing marriage ending around 2050, is there to show where the 1950-2014 trajectory is headed (it’s also a warning against using linear extrapolation to predict the future). The rebound scenario is intended to show how unrealistic the “revive marriage culture” people are. The taper scenario emerges as the most likely alternative; in fact, it’s grown more likely since I first made the figure a few years ago, as you can see by the 2010-2014 jag.

So let’s consider the tapering scenario more substantively — what would it look like? One way to get a declining marriage rate is if marriage is increasingly delayed, even if it doesn’t become less common; people still marry, but later. (If everyone got married at age 99, we would have universal marriage and a very low refined marriage rate.) I give some evidence for this scenario here.

These trends are presented with minimal discussion; I’m not looking at race/ethnicity or social class, childbearing or the recession; I’m not discussing divorce and remarriage and cohabitation, and I’m not testing hypotheses. (This is a list of research suggestions!) To make the subject more enticing as a research topic (and for accountability), I’ve shared the Census data, Stata code, and spreadsheet file used to make this post in this OSF project. You can use anything there you want. You can also easily fork the project — that is, make a duplicate of its contents, which you then own, and take off on your own trajectory, by adding to or modifying them.

Trends

For some context, here is the trend in percentage of men and women ever married, by age, from 1960. (“Ever married” means currently married, separated, divorced, or widowed.) This clearly shows both life-course delay and lifetime decline, but delay is much more prominent, at least so far. Even now, almost 90% of people have been married by age 60 or so, while the marriage rates for people under 35 have plummeted.

evmar6016

People become ever-married when they get first-married. We measure ever-married prevalence from a survey question on current marital status, but first-marriage incidence requires a question like the American Community Survey asks, “In the past 12 months, did this person get married?” Because they also ask how many times each person has been married, you can calculate a first marriage rate with this ratio:

(once married & married in the past 12 months) / (never married + (once married & married in the past 12 months))

Until recently it hasn’t been easy to measure first-marriage across all ages; now that we have the ACS marital events data (since 2008) we can. This allows us to look at the timing of first marriage, which means we can use current age-specific first-marriage rates to project lifetime ever-married rates under current conditions.

Here are the first-marriage rates for men and women, by age. Each set of bars shows the trend from 2008 to 2016. The left side shows men, by age; the right side shows women, by age; the totals for men and women are in the middle. This shows that first-marriage rates have fallen for men and women under age 35, but increased for those over age 35. The total first-marriage rate has rebounded from the 2013 crater, but is still lower than 2008.

1stmarage

This is a short-range trend, 9 years. It could be recession-specific, with people delaying marriage because of hardships, or relationships falling apart under economic stress, and then hurrying to marry a few years later. But it also fits the long-term trend of delay over decline.

The overall rates for men and women show that the 2014-2016 rebound has not brought first-marriage rates back to their 2008 level. However, what about lifetime odds of marriage? The next figure uses women’s age-specific first-marriage rates to project lifetime odds of marriage for three years: 2008, the 2013 crater, and 2016. This shows, for example, that at 2008 rates 59% of women would have married by age 30, compared with 53% in both 2013 and 2016.

1stmarproj

The 2013 and 2016 lines diverge after age 30, and by age 65 the projected lifetime ever-married rates have fully recovered. This implies that marriage has been delayed, but not forgone (or denied).

Till now I’ve shown age and sex-specific rates, but haven’t addressed other things that might changed in the never-married population. Finally, I estimated logistic regressions predicting first-marriage among never married men and women. The models include race, Hispanic origin, nativity, education, and age. In addition to the year and age patterns above, the models show that all races have lower rates than Whites, Hispanics have lower rates than non-Hispanics, foreign-born people have higher rates (which explains the Hispanic result), and people with more education first-marry more (code and results in the OSF project).

To see whether changes in these other variables change the story, I used the regressions to estimate first-marriage rates at the overall mean of all variables. These show a significant rebound from the bottom, but not returning to 2008 levels, quite similar to the unadjusted trends above:

1stmaradj

This is all consistent with the taper scenario described at the top. Marriage delayed, which reduces the annual marriage rate, but with later marriage picking up much of the slack, so that the decline in lifetime marriage prevalence is modest.


* The refined marriage rate is the number of marriages as a fraction of unmarried people. This is more informative than the crude marriage rate (which the National Center for Health Statistics tracks), which is marriages as a fraction of the total population. In this post I use what I guess you would call an age-specific refined first-marriage rate, defined above.

Leave a comment

Filed under Research reports

Demographic facts your students should know cold

Here’s an update of a series I started in 2013, and updated in 2016.

Is it true that “facts are useless in an emergency“? Depends how you define emergency I guess. I used to have a little justification for why we need to know demographic facts, as “the building blocks of first-line debunking.” It’s facts plus arithmetic that let us ballpark the claims we are exposed to all the time. The idea was to get our radar tuned to identify falsehoods as efficiently as possible, to prevent them spreading and contaminating reality. Although I grew up on “facts are lazy and facts are late,” I actually still believe in this mission, I just shake my head slowly while I ramble on about it.

It started a few years ago with the idea that the undergraduate students in my class should know the size of the US population. Not to exaggerate the problem, but too many of them don’t, at least when they reach my sophomore level family sociology class. If you don’t know that fact, how can you interpret statements such as Trump’s “I’ve created over a million jobs since I’m president”? (The U.S. population grew by about 1.3 million between the 2016 election and the day he said that; CNN has a jobs tracker.)

What’s a number for? Lots of people disparage the nitpickers when they find something wrong with the numbers going around. But everyone likes a number that appears to support their argument. The trick is to know the facts before you know the argument, and for that you need some foundational demographic knowledge. This list of facts you should know is just a prompt to get started in that direction.

facts-cartoon

Here’s the list of current demographic facts you need just to get through the day without being grossly misled or misinformed — or, in the case of journalists or teachers or social scientists, not to allow your audience to be grossly misled or misinformed. Not trivia that makes a point or statistics that are shocking, but the non-sensational information you need to make sense of those things when other people use them. And it’s really a ballpark requirement (when I test the undergraduates, I give them credit if they are within 20% of the US population — that’s anywhere between 260 million and 390 million!).

This is only 25 facts, not exhaustive but they belong on any top-100 list. Feel free to add your facts in the comments (as per policy, first-time commenters are moderated). They are rounded to reasonable units for easy memorization. All refer to the US unless otherwise noted. Most of the links will take you to the latest data:

Fact Number Source
World Population 7.4 billion 1
US Population 326 million 1
Children under 18 as share of pop. 23% 2
Adults 65+ as share of pop. 15% 2
Official unemployment rate 4.3% 3
Unemployment rate range, 1970-2017 4% – 11% 4
Labor force participation rate, age 16+ 63% 9
Labor force participation rate range, 1970-2015 60% – 67% 9
Non-Hispanic Whites as share of pop. 61% 2
Blacks as share of pop. 13% 2
Hispanics as share of pop. 18% 2
Asians as share of pop. 6% 2
American Indians as share of pop. 1% 2
Immigrants as share of pop 13% 2
Adults age 25+ with BA or higher 30% 2
Median household income $54,000 2
Total poverty rate 14% 8
Child poverty rate 20% 8
Poverty rate age 65+ 9% 8
Most populous country, China 1.4 billion 5
2nd most populous country, India 1.3 billion 5
3rd most populous country, USA 324 million 5
4th most populous country, Indonesia 258 million 5
5th most populous country, Brazil 206 million 5
Male life expectancy at birth 76 6
Female life expectancy at birth 81 6
National life expectancy range 50 – 85 7

Sources:
1. U.S. Census Bureau Population Clock

2. U.S. Census Bureau quick facts

3. Bureau of Labor Statistics

4. Google public data: http://bit.ly/UVmeS3

5. CIA World Factbook

6. National Center for Health Statistics

7. CIA World Factbook

8. U.S. Census Bureau poverty tables

9. Bureau of Labor Statistics

Handy one-page PDF: Demographic Facts You Need to Know 2017

14 Comments

Filed under Me @ work

Made in America, by immigrants: children

Immigrants make a lot of great things in the USA, like communities and ideas and political organizations. And they also make American children. So for Made in America Week, a quick look at children born in the U.S. whose parents were not. That is, children made in America by immigrants.

For this table I used the American Community Survey, made available by IPUMS, and selected children ages 0-17 who live with two parents. Then I narrowed that group down to those for whom both parents were born in one of the top 20 countries (or regions), from those listed in the birthplace variable (described here), including the USA. The table shows the birthplace of mother and father (same-sex parent couples are excluded). The blue outer band shows the children who have at least one US-born parent. The green diagonal shows the number of children with two parents who immigrated from the same country. For the rest, the colors highlight larger cells, growing darker as cells surpass 1000, 5000, and 10,000. I’ll mention a few below.

You’ll have to click to enlarge:

Children made in America by immigrants

The green cells are the largest in each row and column, except the blue US-born-parent cells. In most cases the green cell is larger than the blue ones — for example, there are 3.5 million U.S. born children who live with two Mexican-born parents, outnumbering the 950,000 who have a Mexican-born father and U.S.-born mother, and 650,000 in the reverse case. But in some cases the green cell is very small, for example England, as there are more than 100,000 children with one England-born and one U.S.-born parent, but only 4,000 who have two England-born parents.

In other cases there are big gender differences reflecting migration and marriage patterns. So there are 10,000 children with a Chinese-born mother and Vietnamese-born father, but only 6,000 of the reverse. Also, in the case of Asia parents, there are more U.S.-born kids with Asian-born mothers and U.S.-born fathers than the reverse, presumably reflecting the greater tendency of Asian women to marry White men (this doesn’t apply to Laos and India).

Anyway, happy Made in America week.

1 Comment

Filed under In the news

A step toward civilization (and have more children), Shanghai edition

Over the course of two weeks in China, I saw several versions of signs like this:

IMG_1319

“A small step forward, a big step for civilization” (向前一小步, 文明一大步).

This one is posted in the old-town section of Nanxun (now a tourist attraction), naturally, above a urinal.* Invoking civilization may be overblown for the problem of men standing too far away (which didn’t seem to be especially extreme, compared to U.S. urinals), but China has a long tradition of using dramatic slogans to call citizens to higher common purpose. Here was one that struck me, in downtown Shanghai:

20170619-DSC_0587

Every family striving to become a civilized family; everyone involved in its creation (家家争做文明家庭; 人人叁与创建活动).

This is from the Shanghai public health authorities. (No, I don’t know Chinese, but I love trying to use a dictionary, and I ask people.) The fascinating thing about that is the composition of the civilized family pictured: father, mother, two grandparents, and two children. 

Fertility rates in China are well below replacement level, as they are in other East Asian countries, meaning the average woman will have fewer than two children in her lifetime and the population will eventually shrink (barring immigration). China’s total fertility rate nationally is probably at about 1.5. In Shanghai, a metro area with some 20 million people, the norm was already one child per family before the one-child policy was implemented in 1980, and fertility has continued to fall; it most recently clocked in at a shockingly low .88 per woman as of 2008.

Reasons for ultra-low fertility are varied and contested, but likely culprits include expensive housing and education costs for children. It was reported to me informally that about half of children can go to college-track high schools instead of vocational schools, and that is determined by a standardized test administered at the end of middle school. That puts tremendous pressure on parents with middle-class aspirations. Which helps explain the extensive system of expensive supplemental private education, as promoted by this ad I saw in an upscale mall:

IMG_1100

School advertisement, Shanghai

The website for this company promises, “Super IQ, Wealth of Creativity, Instant Memory Capacity.” How many kids are you going to send to this private program?

One of the five perfect, super-involved parents at the parent-child class is a man, which may or may not seem like a lot. Of the many people taking their kids to school on scooters, I didn’t see a lot with more than one child, and the only picture I got was of one piloted by the apparent dad (note also something you don’t see here much: schoolboy in pink shirt):

IMG_1092

Man taking children to school, Shanghai

This recalls another probable cause of low-low fertility, the gender-stuck family and employment practices that keep women responsible for children and other care work (scooter dads notwithstanding). In conjunction with women outperforming men in college graduation rates these days (as in the U.S.), this indirectly reduces fertility by leading to delayed marriage, and directly reduces fertility by causing parents to decide against a second child.

20170625-DSC_1094

Grandparent, parent, child, in Hangzhou

The weak system of care hurts on both ends, with people having fewer children because raising them is expensive, and people needing children to take care of old people because public support is lacking. This may be one reason why grandparents can have a positive effect on parents’ motivation to have children, as reported by Yingchun Ji and colleagues (including Feinian Chen, who hosted my visit). The fact that it is common for grandparents to provide extensive care for their grandchildren, as Feinian Chen has described (paywall), presumably helps strengthen their pronatal case.

Lots of pictures of grandparents taking care of a single grandchild to choose from. Here’s one, from the (awesome) Shanghai Museum:

20170619-DSC_0623

Grandparent and child, Shanghai

The one-child policy ended in 2016, and couples no longer have to get permission to have a first or second child (but they do for a third or more). This change alone, although a better-late-than-never thing, may not do much to increase birth rates. That is the conclusion from studies of families for whom the policy was relaxed earlier. Sadly, although birth rates were already falling dramatically in the 1970s and the one-child policy was not responsible for the trend, the policy still (in addition to large scale human rights abuses) created many millions of one-child families that will struggle to meet intergenerational care obligations in the absence of adequate public support. (Here’s a good brief summary from Wang Feng, Baochang Gu, and Yong Cai.)

This is a challenge for civilization.

The pictures here, and a few hundred more, are on my Flickr site under creative commons license.


Americans who love the funny translations of signs in China may be in for some disappointment, as the Standardization Administration has announced plans to implement thousands of stock translations in the service sector nationwide.

10 Comments

Filed under Me @ work

2016 U.S. population pyramid, with Baby Boom

I’m finishing up revisions for the second edition of The Family, and that means it’s time to update the population pyramids.

Because it’s not so easy (for me) to find population by age and sex for single years of age for the current year, and because there is a little trick to making population pyramids in Excel, and because I’m happy to be nearing the end of the revision, I took a few minutes to make one to share.

The data for single year population estimates for July 1, 2016 are here, and more specifically in the file called NC-EST2016-AGESEX-RES.csv, here. To make the pyramid in Excel, you multiply one of the columns of data by -1 and then display the results as absolute values by setting the number to a custom format, like this: #,###;#,###. Then in the bar graph you set the two series to overlap 100%.*

In this figure I highlighted the Baby Boom so you can see the tsunami rolling into the 70s now. Unlike when I discuss cohorts previously, when I let it slide, here I actually adjusted this from what you would get applying the official Baby Boom years (1946-1964) with subtraction from 2016. That would give you ages 52 to 70, but the boom obviously starts ate age 69 and ends at age 51 here, so that’s what I highlighted. Maybe this has to do with the timing within years (nine months after the formal end of WWII would be May 2, 1946). Anyway, this is not the official Baby Boom, just the boom you see.

Click to enlarge:

2016 pop pyramid


* I put the data file, the Census Bureau description, and the Excel file on the Open Science Framework here: https://osf.io/qanre/.

3 Comments

Filed under Me @ work

Intermarriage rates relative to diversity

Addendum: Metro-area analysis added at the end.

The Pew Research Center has a new report out on race/ethnic intermarriage, which I recommend, by Gretchen Livingston and Anna Brown. This is mostly a methodological note, which also nods at some other issues.

How do you judge the amount of intermarriage? For example, in the U.S., smaller groups — Asians and American Indians — marry exogamously at higher rates. Is that because they have fewer same-race people to choose from? Or is it because Whites shun them less than they do Blacks, which are also a larger group. To answer this, you can look at the intermarriage rates relative to group size in various ways.

The Pew report gives some detail about different groups marrying each other, but the topline number is the total intermarriage rate:

In 2015, 17% of all U.S. newlyweds had a spouse of a different race or ethnicity, marking more than a fivefold increase since 1967, when 3% of newlyweds were intermarried, according to a new Pew Research Center analysis of U.S. Census Bureau data.

Here’s one way to assess that topline number, which I’ll do by state just to illustrate the variation in the U.S. (and then I repeat this by metro area below, by popular request).*

The American Community Survey (which I download from IPUMS.org) identified people who married within the previous 12 months, whom I’ll call newlyweds. I use the 2011-2015 combined data file to increase the sample size in small states. I define intermarriage a little differently than Pew does (for convenience, not because it’s better). I call a couple intermarried if they don’t match each other in a five-category scheme: White, Black, Asian/Pacific Islander, American Indian, Hispanic. I discard those newlyweds (about 2%) who are are multiracial or specified other race and not Hispanic. I only include different-sex couples.

The Herfindahl index is used by economists to measure market concentration. It looks like this:

H =\sum_{i=1}^N s_i^2

where si is the market share of firm i in the market, and N is the number of firms. It’s the sum of the squared proportions held by each firm (or race/ethnicity). The higher the score, the greater the concentration. In race/ethnic terms, if you subtract the Herfindahl index from 1, you get the probability that two randomly selected people are in a different race/ethnic group, which I call diversity.

Consider Maine. In my analysis of newlyweds in 2011-2015, 4.55% were intermarried as defined above. The diversity calculation for Maine looks like this (ignore the scale):

me

So in Maine two newlyweds have a 5.2% chance of being intermarried if you scramble up the marriage applications, compared with 4.6% who are actually intermarried. (A very important decision here is to use the newlywed population to calculate diversity, instead of the single population or the total population; it’s easy to change that.) Taking the ratio of these, I calculate that Maine is operating at 87% of its intermarriage potential (4.55 / 5.23). Maybe call it a diversity-adjusted intermarriage propensity. So here are all the states (and D.C.), showing diversity and intermarriage. (The diagonal line shows what you’d get if people married at random; the two illegible clusters are DC+NY and WA+KS; click to enlarge.)

State intermarriage

How far each state is off the line is the diversity-adjusted intermarriage propensity (intermarriage divided by diversity). Here is is in map form (using maptile):

DAMP

And here are the same calculations for the top 50 metro areas (in terms of number of newlyweds in the sample). I chose the top 50 by sample size of newlyweds, by which the smallest is Tucson, with a sample of 478. First, the figure (click to enlarge):

State intermarriage

And here’s the list of metro areas, sorted by diversity-adjusted intermarriage propensity:

Diversity-adjusted intermarriage propensity
Birmingham-Hoover, AL .083
Memphis, TN-MS-AR .127
Richmond, VA .133
Atlanta-Sandy Springs-Roswell, GA .147
Detroit-Warren-Dearborn, MI .155
Philadelphia-Camden-Wilmington, PA-NJ-D .157
Louisville/Jefferson County, KY-IN .170
Columbus, OH .188
Baltimore-Columbia-Towson, MD .197
St. Louis, MO-IL .204
Nashville-Davidson–Murfreesboro–Frank .206
Cleveland-Elyria, OH .213
Pittsburgh, PA .215
Dallas-Fort Worth-Arlington, TX .219
New York-Newark-Jersey City, NY-NJ-PA .220
Virginia Beach-Norfolk-Newport News, VA .224
Washington-Arlington-Alexandria, DC-VA- .224
New Orleans-Metairie, LA .229
Jacksonville, FL .234
Houston-The Woodlands-Sugar Land, TX .235
Los Angeles-Long Beach-Anaheim, CA .239
Indianapolis-Carmel-Anderson, IN .246
Chicago-Naperville-Elgin, IL-IN-WI .249
Charlotte-Concord-Gastonia, NC-SC .253
Raleigh, NC .264
Cincinnati, OH-KY-IN .266
Providence-Warwick, RI-MA .278
Milwaukee-Waukesha-West Allis, WI .284
Tampa-St. Petersburg-Clearwater, FL .286
San Francisco-Oakland-Hayward, CA .287
Orlando-Kissimmee-Sanford, FL .295
Boston-Cambridge-Newton, MA-NH .305
Buffalo-Cheektowaga-Niagara Falls, NY .305
Riverside-San Bernardino-Ontario, CA .311
Miami-Fort Lauderdale-West Palm Beach, .312
San Jose-Sunnyvale-Santa Clara, CA .316
Austin-Round Rock, TX .318
Kansas City, MO-KS .342
San Diego-Carlsbad, CA .343
Sacramento–Roseville–Arden-Arcade, CA .345
Minneapolis-St. Paul-Bloomington, MN-WI .345
Seattle-Tacoma-Bellevue, WA .346
Phoenix-Mesa-Scottsdale, AZ .362
Tucson, AZ .363
Portland-Vancouver-Hillsboro, OR-WA .378
San Antonio-New Braunfels, TX .388
Denver-Aurora-Lakewood, CO .396
Las Vegas-Henderson-Paradise, NV .406
Provo-Orem, UT .421
Salt Lake City, UT .473

At a glance no big surprises compared to the state list. Feel free to draw your own conclusions in the comments.

* I put the data, codebook, code, and spreadsheet files on the Open Science Framework here, for both states and metro areas.

7 Comments

Filed under In the news, Me @ work