Now in the Washington Post: The generation labels mean nothing. It’s time to retire them

The Washington Post has published my Opinion piece on generation labels, “The generation labels mean nothing. It’s time we retired them.” They even commissioned art, which moves!

by Tara Jacoby, for The Washington Post

This follows the series of posts on this blog, going back a few years, you can read under the generations tag.

You can read or sign the open letter to the Pew Research Center here.

Hard times and falling fertility in the United States

The text and figures of this short paper are below, and it’s also available as a PDF on SocArXiv, in more citable form. The Stata code and other materials are up as well, here. It’s pretty drafty — very happy to hear any feedback.

Preamble: When Sabrina Tavernise, Claire Cain Miller, Quoctrung Bui and Robert Gebeloff wrote their excellent New York Times piece, Why American Women Everywhere Are Delaying Motherhood, they elevated one important aspect of the wider conversation about falling fertility rates — the good news that women with improving economic opportunities often delay or forego having children because that’s what they’d rather do.

But it’s tricky to analyze this. Consider one woman they quote, who said, “I can’t get pregnant, I can’t get pregnant… I have to have a career and a job. If I don’t, it’s like everything my parents did goes in vain.” Or another, who is waiting to have children till she finishes a dental hygienist degree, who said, “I’m trying to go higher. I grew up around dysfunctional things. I feel like if I succeed, my children won’t have to.” If people can’t afford decent childcare (yet), or won’t have a job that pays enough to afford the parenting they want to provide until they finish a degree — so they delay parenthood while investing in their careers — are they not having a baby because there are promising opportunities, or because of economic insecurity? These are edge cases, I guess, but it seems like they extend to a lot of people right now. That’s what motivated me to do this analysis.


Hard times and falling fertility in the United States

by Philip N. Cohen

Abstract

Recent reports have suggested that falling fertility in the US since the 2008 recession is being driven by women with advantaged status in the labor market taking advantage of career opportunities. This paper takes issue with that conclusion. Although high incomes are associated with lower fertility in general, both in the cross section and over time (within and between countries), economic crises also lead to lower fertility. I offer a new descriptive analysis using data from the American Community Survey for 2000-2019. In the U.S. case, the fertility decline was widespread after the 2008 recession, but most concentrated among younger women. Although women with above average education have long had lower birth rates, the analysis shows that birth rates fell most for women in states with higher than average unemployment rates, especially among those with below average education. This is consistent with evidence that birth rates are falling, and births delayed, by economic insecurity and hardship.

Introduction

A New York Times article by Sabrina Tavernise et al. was titled, “Why American Women Everywhere Are Delaying Motherhood” (Tavernise et al. 2021). Although it did not provide a simple answer to the question, it did offer this: “As more women of all social classes have prioritized education and career, delaying childbearing has become a broad pattern among American women almost everywhere.” And it included a figure showing birth rates falling faster in counties with faster job growth. Reading that article, the writer Jill Filipovic concluded, “the women who are driving this downturn [in fertility] are those who have the most advantage and the greatest range of choices, and whose prospects look brightest” (Filipovic 2021). This paper takes issue with that conclusion.

Clearly, one driver of delayed childbearing is the desire to maximize career opportunities, but there is also the weight of uncertainty and insecurity, especially regarding the costs of parenting. Filipovic (2021) also wrote, “Children? In this economy?” These two tendencies appear to generate opposing economic effects: A strong economy gives mothers more rewarding opportunities that childrearing threatens (reducing fertility), while also providing greater economic security to make parenting more affordable and desirable (increasing fertility). These two pathways for economic influence on fertility trends are not easily separable in research – or necessarily exclusive in personal experience. In what follows I will briefly situate falling US fertility in the wider historical and global context, and then offer a descriptive analysis of the US trend in births from 2000 to 2019, focusing on relative education and state unemployment rates.

Review and context

Historically, economic growth and development have been key determinants of fertility decline (Herzer, Strulik, and Vollmer 2012; Myrskylä, Kohler, and Billari 2009), although by no means the only ones, and with coupling that is sometimes loose and variable (Bongaarts 2017). In the broadest terms, both historically and in the present, higher average incomes at the societal level are strongly associated with lower fertility rates; and this relationship recurs within the United States as well, as shown in the cross section in Figure 1.

Figure 1. Total fertility rate by GDP per capita: Countries and U.S. states, 2019. Note: Markers are scaled by population. US states linear fit weighted by population. Source: World Bank, US Census Bureau, National Center for Health Statistics, Bureau of Economic Analysis.

A lower standard of living is associated with higher birth rates. However, economic crises cause declines in fertility (Currie and Schwandt 2014), and this was especially true around the 2008 recession in the U.S. (Comolli 2017; Schneider 2015) and other high-income countries (Gaddy 2021). The crisis interrupted what had been a mild recovery from falling total fertility rates in high-income countries, leading to a decline from 1.74 in 2008 to 1.57 by 2019 (Figure 2).

Figure 2. Total fertility rate in the 10 largest high-income countries: 1990-2019. Note: Countries with at least $30,000 GDP per capita at PPP. Source: World Bank.

Figure 2 shows that the pattern of a peak around 2008 followed by a lasting decline is widespread (with the notable exceptions of Germany and Japan, whose TFRs were already very low), although the post-crisis decline was much steeper in the U.S. than in most other high income countries. Figure 3 puts the post-crisis TFR decline in global context, showing the change in TFR between the highest point in 2007-2009 and the lowest point in 2017-2019 for each country, by GDP per capita. (For example, the U.S. had a TFR peak of 2.12 in 2007, and its lowest point in 2017-2019 was 1.71 in 2019, so its score is -.41.) Fertility decline is positively associated with per capita income, as low-income countries continued the TFR declines they were experiencing before the crisis. However, among the high-income countries the relationship reversed (the inflection point in Panel A is $36,600, not shown). Thus, the sharp drop in fertility in the U.S. after the 2008 economic crisis is indicative of a larger pattern of post-crisis fertility trends. Globally, fertility is higher but falling in lower-income countries; fertility is lower in high-income counties, but fell further during the recent period of economic hardship or uncertainty. As a result of falling at both low and high ends of the economic scale, therefore, global TFR declined from 2.57 in 2007 to 2.40 in 2019 (by these World Bank data).

Figure 3. Difference in total fertility rate between the highest point in 2007-2009 and the lowest point in 2017-2019, by GDP per capita. Note: Markers scaled by population; largest countries labeled. Source: World Bank.

The mechanisms for these relationships – higher standard of living and rising unemployment both lead to lower fertility – defy simple characterization. The social scale (individual to global) may condition the relationship; there may be different effects of relative versus absolute economic wellbeing (long term and short term); development effects may be nonlinear (Myrskylä, Kohler, and Billari 2009); and the individual or cultural perception of these social facts is important as well (Brauner-Otto and Geist 2018). Note also that, as fertility rates fall with development, the question of having no children versus fewer has emerged as a more important distinction, which further complicates the interpretation of TFR trends (Hartnett and Gemmill 2020).

U.S. recessions

In the case of recent U.S. recessions, the negative impact on fertility was largest for young women. After the 2001 recession, birth rates only fell for women under age 25. In the wake of the more severe 2008 economic crisis, birth rates fell for all ages of women up to age 40 (above which rates continued to increase every year until 2020) although the drop was still steepest below age 25 (Cohen 2018). For the youngest women, births have continued to fall every year since, while those over age 35 saw some rebound from 2012 to 2019 (Figure 4). Clearly, during this period many women postponed births from their teens or twenties into their thirties and forties. The extent to which they will end up with lower fertility on a cohort basis depends on how late they continue (or begin) bearing children (Beaujouan 2020).

Figure 4. Annual change in U.S. births per 1,000 women, by age: 2001-2020. Source: National Center for Health Statistics.

Contrary to the suggestion that fertility decline is chiefly the result of improving opportunities for women, the pattern of delaying births is consistent with evidence that structural changes in the economy, the decline in goods-producing industries and the rise of less secure and predictable service industry jobs, are largely responsible for the lack of a fertility rebound after the 2008 recession, especially for Black and Hispanic women (Seltzer 2019). Lower education is also associated with greater uncertainty about having children among young people (Brauner-Otto and Geist 2018). For women in more precarious circumstances, especially those who are not married, these influences may be observed in the effect of unemployment rates on birth rates at the state level (Schneider and Hastings 2015). The available evidence supports the conclusion that the 2008 recession produced a large drop in fertility that did not recover before 2020 at least in part because the economic uncertainty it amplified has not receded – making it both a short-term and long-term event.

Birth rates recovered some for older women, however – over 30 or so – which is consistent with fertility delay. But this delay does not necessarily favor the opportunity cost versus economic constraint explanations. On one hand are people with higher levels of education (anticipated or realized) who plan to wait until their education is complete. On the other hand are those with less education who are most economically insecure, whose delays reflect navigating the challenges of relationship instability, housing, health care, childcare and other costs with lesser earning potential. This latter group may end up delaying either until they attain more security or until they face the prospect of running out of childbearing years. Both groups are deliberately delaying births partly for economic reasons, but the higher-education group is much more likely to have planned births while the latter have higher rates of unintended or mistimed births (Hayford and Guzzo 2016).

The opportunity cost of women’s childbearing, in classical models, is simply the earnings lost from time spent childrearing – the product of the hours of employment lost and the expected hourly wage (Cramer 1979). Although rising income potential for women has surely contributed to the long-run decline of fertility rates, in the U.S. that mechanism has not been determinative. Women experienced large increases in earnings for decades during which fertility rates did not fall. As the total fertility rate rose from its low point in 1976 (1.74) to the post-Baby Boom peak in 2007 (2.12) – defying the trend in many other high-income countries – the average weekly earnings of full-time working women ages 18-44 rose by 16% in constant dollars (Figure 5).

Figure 5. Median weekly earnings of full-time employed women ages 18-44, and total fertility rate. Source: Current Population Survey Annual Social and Economic Survey, and Human Fertility Database.

Clearly, other factors beyond lost earnings calculations are at work. However, there is no simple way to distinguish those who make direct cost comparisons, where investments in time and money take away from other needs and opportunities, from those who delay out of concern over future economic security, which weighs on people at all income levels and generates reluctance to make lifelong commitments (Pugh 2015). But the implications of these two effects are opposing. For people who don’t want to lose opportunities, a strong economy with abundant jobs implies lower fertility. For people who are afraid to commit to childrearing because of insecurity about their economic fortunes, a weak economy should decrease fertility. The experience of the post-2008 period provides strong evidence for the greater weight of the latter mechanism.

US births, 2000-2019

If opportunity costs were the primary consideration for women, one might expect an inverse relationship between job market growth and fertility rates: more jobs, fewer babies; fewer jobs, more babies. This is the pattern reported by Tavernise et al. (2021), who found that birthrates after the 2008 crisis fell more in counties with “growing labor markets” – which they attribute to the combination of improving opportunities for women and the high costs of childcare. However, their analysis did not attend to chronological ordering. They identified counties as having strong job growth if they were in the top quintile of counties for labor market percent change for the period 2007 to 2019, and compared them with counties in the bottom quintile of counties on the same measure with regard to birth rates (author correspondence). Thus, their analysis used a 2007-2019 summary measure to predict birth rates for each year from 1990 to 2019, making the results difficult to interpret.

In addition to using contemporaneous economic data, whereas Tavernise et al. (2021) used county-level birth rates, in this analysis I use individual characteristics and state-level data. I construct indicators of individual- and state-level relative advantage during the period before and after the 2008 economic crisis, from 2000 to 2019. Individual data are from the 2000-2019 American Community Survey (ACS) via IPUMS (Ruggles et al. 2021). I include in the analysis women ages 15-44, and use the fertility question, which asks whether they had a baby in the previous 12 months. I analyze this as a dichotomous dependent variable, using ordinary least squares regression. Results are graphed as marginal effects at the means, using Stata’s margins command. The sample size is 9,415,960 million women, 605,150 (6.4%) of whom had a baby in the previous year (multiple births are counted only once).

In models with controls, I control for age in five-year bins, race/ethnicity (White, Black, American Indian, Asian/Pacific Islander, Other/multiple-race, and Hispanic), citizenship (U.S.-born, born abroad to American parents, naturalized, and not a citizen), marital status (married, spouse absent, separated, divorced, widowed, and never married), education (less than high school, high school graduate, some college, and BA or higher degree), as well as (in some models) the state unemployment rate (lagged two years), and state fixed effects. State unemployment rates are from Local Area Unemployment Statistics (Bureau of Labor Statistics 2021). ACS person weights are used in all analyses.

For states, I use the unemployment rate in each state for each year, and divide the states at the median, so those with the median or higher unemployment for each year are coded as high unemployment states, and low unemployment otherwise (this variable is lagged two years, because the ACS asks whether each woman has had a birth in the previous 12 months, but does not specify the month of the birth, or the date of the interview). For individuals, the identification of economic advantage is difficult with the cross-sectional data I use here, because incomes are likely to fall in the year of a birth, and education may be determined endogenously with fertility as women age (Hartnett and Gemmill 2020), so income and education cannot simply be used to identify economic status. Instead, I identify women as low education if they have less than the median level of education for women of their age in their state for each year (using single years of age, and 26 categories of educational attainment), and high education otherwise. Thus, individual women in my sample are coded as in a high or low unemployment state relative to the rest of the country each year, and as having high or low education relative other women of their age and state and year. Using the ACS migration variable, I code women into the state they lived in the previous year, which is more likely to identify where they lived when they determined whether to have a baby (which also means I exclude women who were not living in the U.S. in the year before the survey).

Figure 6 shows the unadjusted probability of birth for women in high- and low-unemployment states for the period 2000-2019. This shows the drop in birth rates after 2008, which is steeper for women who live in high-unemployment states, especially before 2017. This is what we would expect from previous research on the 2008 financial crisis: a greater falloff in birth rates where the economy suffered more.

Figure 6. Probability of birth in the previous year: 2000-2019, by state unemployment relative to the national media (marginal effects at the means). Women ages 15-44. Based on state of residence in the previous year; unemployment lagged two years.

Next, I split the sample again by women’s own education relative to the median for those of the same age, year, and state. Those less than that median are coded as low education, those at or higher than the median are coded as high education. Figure 7 shows these results (again, unadjusted for control variables), showing that those with lower education (the top two lines) have higher birth rates throughout the period. After 2008, within both the high- and low-education groups, those in high-unemployment states had longer and steeper declines in birth rates (at least until 2019). The steepest decline is among low-education, high-unemployment women: those facing the greatest economic hardship at both the individual and state level. Finally, Figure 8 repeats the model shown in Figure 7, but with the control variables described above, and with state fixed effects. The pattern is very similar, but the differences associated with state unemployment are attenuated, especially for those with low education.

Figure 7. Probability of birth in the previous year: 2000-2019, by education relative to the age-state median, and state unemployment relative to the national media (marginal effects at the means). Women ages 15-44. Based on state of residence in the previous year; unemployment lagged two years.

Figure 8. Probability of birth in the previous year: 2000-2019, by education relative to the age-state median, and state unemployment relative to the national media, with controls for age, race/ethnicity, citizenship, marital status, and state fixed effects (marginal effects at the means). Women ages 15-44. Based on state of residence in the previous year; unemployment lagged two years.

Discussion

Although birth rates fell for all four groups of women in this analysis after the 2008 recession, these results reflect that paradoxical nature of economic trends and birth rates. Women with higher education (and greater potential earnings) have lower birthrates, consistent with the opportunity cost reasoning described in Tavernise et al. (2021) and elsewhere. However, women in states with higher unemployment rates – especially when they have high relative education – also have lower birthrates, and in these states saw greater declines after the 2008 crisis. This is consistent with the evidence of negative effects of economic uncertainty and stress. And it goes against the suggestion that stronger job markets drive down fertility rates for women with higher earning potential, at least in the post-2008 period. In the long run, perhaps, economic opportunities reduce childbearing by increasing job market opportunities for potential mothers, but in recent years this effect has been swamped by the downward pressure of economic troubles. US birth rates fell further in 2020, apparently driven down by the COVID-19 pandemic, which raised uncertainty – and fear for the future – to new heights (Cohen 2021; Sobotka et al. 2021). We don’t yet know the breakdown of the shifts in fertility for that year, but if the effects were similar to those of the 2008 economic crisis, we would expect to see greater declines among those who were most vulnerable.

References

Beaujouan, Eva. 2020. “Latest-Late Fertility? Decline and Resurgence of Late Parenthood Across the Low-Fertility Countries.” Population and Development Review 46 (2): 219–47. https://doi.org/10.1111/padr.12334.

Bongaarts, John. 2017. “Africa’s Unique Fertility Transition.” Population and Development Review 43 (S1): 39–58. https://doi.org/10.1111/j.1728-4457.2016.00164.x.

Brauner-Otto, Sarah R., and Claudia Geist. 2018. “Uncertainty, Doubts, and Delays: Economic Circumstances and Childbearing Expectations Among Emerging Adults.” Journal of Family and Economic Issues 39 (1): 88–102. https://doi.org/10.1007/s10834-017-9548-1.

Bureau of Labor Statistics. 2021. “States and Selected Areas:  Employment Status of the Civilian Noninstitutional Population, January 1976 to Date, Seasonally Adjusted.” 2021. https://www.bls.gov/web/laus/ststdsadata.txt.

Cohen, Philip N. 2018. Enduring Bonds: Inequality, Marriage, Parenting, and Everything Else That Makes Families Great and Terrible. Oakland, California: University of California Press.

———. 2021. “Baby Bust: Falling Fertility in US Counties Is Associated with COVID-19 Prevalence and Mobility Reductions.” SocArXiv. https://doi.org/10.31235/osf.io/qwxz3.

Comolli, Chiara Ludovica. 2017. “The Fertility Response to the Great Recession in Europe and the United States: Structural Economic Conditions and Perceived Economic Uncertainty.” Demographic Research 36 (51): 1549–1600. https://doi.org/10.4054/DemRes.2017.36.51.

Cramer, James C. 1979. “Employment Trends Ofyoung Mothers and the Opportunity Cost of Babies in the United States.” Demography 16 (2): 177–97. https://doi.org/10.2307/2061137.

Currie, Janet, and Hannes Schwandt. 2014. “Short- and Long-Term Effects of Unemployment on Fertility.” Proceedings of the National Academy of Sciences 111 (41): 14734–39. https://doi.org/10.1073/pnas.1408975111.

Filipovic, Jill. 2021. “Opinion | Women Are Having Fewer Babies Because They Have More Choices.” The New York Times, June 27, 2021, sec. Opinion. https://www.nytimes.com/2021/06/27/opinion/falling-birthrate-women-babies.html.

Gaddy, Hampton Gray. 2021. “A Decade of TFR Declines Suggests No Relationship between Development and Sub-Replacement Fertility Rebounds.” Demographic Research 44 (5): 125–42. https://doi.org/10.4054/DemRes.2021.44.5.

Hartnett, Caroline Sten, and Alison Gemmill. 2020. “Recent Trends in U.S. Childbearing Intentions.” Demography 57 (6): 2035–45. https://doi.org/10.1007/s13524-020-00929-w.

Hayford, Sarah R., and Karen Benjamin Guzzo. 2016. “Fifty Years of Unintended Births: Education Gradients in Unintended Fertility in the US, 1960-2013.” Population and Development Review 42 (2): 313–41.

Herzer, Dierk, Holger Strulik, and Sebastian Vollmer. 2012. “The Long-Run Determinants of Fertility: One Century of Demographic Change 1900–1999.” Journal of Economic Growth 17 (4): 357–85. https://doi.org/10.1007/s10887-012-9085-6.

Myrskylä, Mikko, Hans-Peter Kohler, and Francesco C. Billari. 2009. “Advances in Development Reverse Fertility Declines.” Nature 460 (7256): 741–43. https://doi.org/10.1038/nature08230.

Pugh, Allison J. 2015. The Tumbleweed Society: Working and Caring in an Age of Insecurity. 1 edition. New York, NY: Oxford University Press.

Ruggles, Steven, Sarah Flood, Sophia Foster, Ronald Goeken, Jose Pacas, Megan Schouweiler, and Matthew Sobek. 2021. “IPUMS USA: Version 11.0 [Dataset].” 2021. doi.org/10.18128/D010.V11.0.

Schneider, Daniel. 2015. “The Great Recession, Fertility, and Uncertainty: Evidence From the United States.” Journal of Marriage and Family 77 (5): 1144–56. https://doi.org/10.1111/jomf.12212.

Schneider, Daniel, and Orestes P. Hastings. 2015. “Socioeconomic Variation in the Effect of Economic Conditions on Marriage and Nonmarital Fertility in the United States: Evidence From the Great Recession.” Demography 52 (6): 1893–1915. https://doi.org/10.1007/s13524-015-0437-7.

Seltzer, Nathan. 2019. “Beyond the Great Recession: Labor Market Polarization and Ongoing Fertility Decline in the United States.” Demography 56 (4): 1463–93. https://doi.org/10.1007/s13524-019-00790-6.

Sobotka, Tomas, Aiva Jasilioniene, Ainhoa Alustiza Galarza, Kryštof Zeman, Laszlo Nemeth, and Dmitri Jdanov. 2021. “Baby Bust in the Wake of the COVID-19 Pandemic? First Results from the New STFF Data Series.” SocArXiv. https://doi.org/10.31235/osf.io/mvy62.

Tavernise, Sabrina, Claire Cain Miller, Quoctrung Bui, and Robert Gebeloff. 2021. “Why American Women Everywhere Are Delaying Motherhood.” The New York Times, June 16, 2021, sec. U.S. https://www.nytimes.com/2021/06/16/us/declining-birthrate-motherhood.html.

What the editors of 6000 journals tell us about gender, international diversity, open access, and research transparency

Micah Altman and I have written a paper using the new Open Editors dataset from Andreas Pacher, Tamara Heck, and Kerstin Schoch. They scraped up data on almost half a million editors (editors in chief, editors, editorial board member) at more than 6000 journals from 17 publishers (most of the big ones; they’ve since added some more). Micah and I genderized them (fuzzily), geolocated them in countries, and then coded the journals as either open access or not (using the Directory of Open Access Journals), and according to whether they practice transparency in research (using the Transparency and Openness Promotion signatories). After just basic curiosity about diversity, we wondered whether those that practice open access and research transparency have better gender and international diversity.

The results show overwhelming US and European dominance, not surprisingly. And male dominance, which is more extreme among editors in chief, across all disciplines. Open access journals are a little less gender diverse, and transparency-practicing journals a little more internationally diverse, but those relationships aren’t strong. There are other differences by discipline. A network analysis shows not much overlap between journals, outside of a few giant clusters (which might indicate questionable practices) although it’s hard to say for sure — journals should really use ORCIDs for their editors. Kudos to Micah for doing the heavy lifting on the coding, which involved multiple levels of cleaning and recoding (and for making the R markdown file for the whole thing available).

Lots of details in the draft, here. Feedback welcome!

Here are the editors, by country:

During the pandemic year of 2020, thousands of US parents named their babies Kobe and Gianna

And a few other highlights.

Data from the Social Security Administration show that the names Kobe and Gianna had the greatest increase in popularity of any names in the country in 2020; as Kobe boys increased from 499 to 1500 and Gianna girls from 3408 to 7826. Kobe Bryant and his daughter Gianna died in a helicopter crash on January 26 last year, one of the dramatic national news events eclipsed by the pandemic (George Floyd’s daughter, now 7 years old, is also named Gianna).

The Kobe count of 1500 was surpassed only in 2001, during his first run of NBA championships, but the number per 1000 births was higher in 2020. Here is the trend:

And the Gianna trend, with a similar increase off a much higher base. Gianna became the 12th most common name given to girls in 2020.

Other news from the pandemic year in naming

Besides Gianna, not much change in the top 20 names, by gender, as Olivia, Emma, Liam, and Noah continued their dominance. Most of the top 20 names declined in popularity last year.

Outside the top names, the biggest drop in percentage terms (among those with at least 1000 births) was Alexa, who fell another 36%, from 1995 to 1272. Alexa has had a historically catastrophic decline since Amazon gave the name to its robot shopping companion (discussed last year).

Finally, Mary remains dormant, with 2188 girls getting the name in 2020, a drop of 21 from 2209. I told the story of Mary going back to the Revolutionary War on this blog and in Enduring Bonds. Still ripe for a comeback (jinx). Here’s an updated Figure 1:

The Social Security Data and Stata code for this analysis is here under CC0 license: osf.io/m48qc/. Note SSA updates their denominators every year; I have a file of those in here too.

Why you’ll never establish the existence of distinct “generations” in American society

An update from Pew, today’s thoughts, and then another data exercise.

Pew response

After sending it the folks in charge at the Pew Research Center, I received a very friendly email response to our open letter on generation labels. They thanked me and reported that they already had plans to begin an internal discussion about “generational research” and will be consulting with experts as they do, although the timeline was not given. I take this to mean we have a bona fide opportunity to change course on this issue, both with Pew (which has outsized influence) and more widely in the coming months. But the outcome is not assured. If you agree that the “generations” labels and surrounding discourse are causing more harm than good, for researchers and the public, I hope you will join with me and 140+ social scientists who have signed the letter so far, by signing and sharing the letter (especially to people who aren’t on Twitter). Thanks!

avocado toast

Why “generations” won’t work

Never say never, but I don’t see how it will be possible to identify coherent, identifiable, stable, collectively recognized and popularly understood “generation” categories, based on year of birth, that reliably map onto a diverse set of measurable social indicators. If I’m right about that, which is an empirical question, then whether Pew’s “generations” are correctly defined will never be resolved, because the goal is unattainable. Some other set of birth-year cutoffs might work better for one question or another, but we’re not going to find a set of fixed divisions that works across arenas — such as social attitudes, family behavior, and economic status. So we should instead work on weaning the clicking public from its dependence on the concept and get down to the business of researching social trends (including cohort patterns), and communicating about that research in ways that are intelligible and useful.

Here are some reasons why we don’t find a good set of “generation” boundaries.

1. Mass media and social media mean there are no unique collective experiences

When something “happens” to a particular cohort, lots of other people are affected, too. Adjacent people react, discuss, buy stuff, and define themselves in ways that are affected by these historical events. Gradations emerge. The lines between who is and is not affected can’t be sharply drawn by age.

2. Experiences may be unique, but they don’t map neatly onto attitudes or adjacent behaviors

Even if you can identify something that happened to a specific age group at a specific point in time, the effects of such an experience will be diffuse. To name a few prominent examples: some people grew up in the era of mass incarceration and faced higher risks of being imprisoned, some people entered the job market in 2009 and suffered long-term consequences for their career trajectories, and some people came of age with the Pill. But these experiences don’t mark those people for distinct attitudes or behaviors. Having been incarcerated, unemployed, or in control of your pregnancy may influence attitudes and behaviors, but it won’t set people categorically apart. People whose friends or parents were incarcerated are affected, too; grandparents with unemployed people sleeping on their couches are affected by recessions; people who work in daycare centers are affected by birth trends. And, of course, African Americans have a unique experience with mass incarceration, rich people can ride out recessions, and the Pill is for women. When it comes to indicators of the kind we can measure, effects of these experiences will usually be marginal, not discrete, and not universal. (Plus, as cool new research shows, most people don’t change their minds much after they reach adulthood, so any effects of life experience on attitudes are swimming upstream to be observable at scale.)

3. It’s global now, too

Local experiences don’t translate directly to local attitudes and behavior because we share culture instantly around the world. So, 9/11 happened in the US but everyone knew about it (and there was also March 11 in Spain, and 7/7 in London). There are unique things about them that some people experienced — like having schools closed if you were a kid living in New York — but also general things that affected large swaths of the world, like heightened airline security. The idea of a uniquely affected age group is implausible.

4. Reflexivity

Once word gets out (through research or other means) about a particular trait or practice associated with a “generation,” like avocado toast or student debt, it gets processed and reprocessed reflexively by people who don’t, or do, want to embody a stereotype or trend for their supposed group. This includes identifying with the group itself — some people avoid it and some people embrace it, and some people react to who does the other things in other ways — until the category falls irretrievably into a vortex of cultural pastiche. The discussion of the categories, in other words, probably undermines the categories as much as it reinforces them.

If all this is true, then insisting on using stable, labeled, “generations” just boxes people into useless fixed categories. As the open letter puts it:

Predetermined cohort categories also impede scientific discovery by artificially imposing categories used in research rather than encouraging researchers to make well justified decisions for data analysis and description. We don’t want to discourage cohort and life course thinking, we want to improve it.

Mapping social change

OK, here’s today’s data exercise. There is some technical statistical content here not described in the most friendly way, I’m sorry to say. The Stata code for what follows is here, and the GSS 1972-2018 Cross-Sectional Cumulative Data file is free, here (Stata version); help yourself.

This is just me pushing at my assumptions and supplementing my reading with some tactile data machinations to help it sink in. Following on the previous exercise, here I’ll try out an empirical method for identifying meaningful birth year groupings using attitude questions from the General Social Survey, and then see if they tell us anything, relative to “empty” categories (single years or decades) and the Pew “generations” scheme (Silent, Baby Boom, Generation X, Millennials, Generation Z).

I start with five things that are different about the cohorts of nowadays versus those of the olden days in the United States. These are things that often figure in conversations about generational change. For each of these items I use one or more questions to create a single variable with a mean of 0 and a standard deviation of 1; in each case a higher score is the more liberal or newfangled view. As we’ll see, all of these moved from lower to higher scores as you look at more recent cohorts.

  • Liberal spending: Believing “we’re spending too little money on…” seven things: welfare, the environment, health, big cities, drug addiction, education, and improving the conditions of black people. (For this scale, the measure of reliability [alpha] is .66, which is pretty good.)
  • Gender attitudes: Four questions on whether women are “suited for politics,” working mothers are bad for children, and breadwinner-homemaker roles are good. High scores mean more feminist (alpha = .70).
  • Confidence in institutions: Seven questions on organized religion, the Supreme Court, the military, major companies, Congress, the scientific community, and medicine. High scores mean less confidence (alpha = .68).
  • General political views from extremely conservative to extremely liberal (one question)
  • Never-none: People who never attend religious services and have no religious affiliation (together now up to about 16% of people).

These variables span the survey years 1977 to 2018, with respondents born from 1910 to 1999 (I dropped a few born in 2000, who were just 18 years old in 2018, and those born before 1910). Because not all questions were asked of all the respondents in every year I lost a lot of people, and I had to make some hard choices about what to include. The sample that answered all these questions is about 5,500 people (down from almost 62,000 altogether — ouch!). Still, what I do next seems to work anyway.

Clustering generations

Once I have these five items, I combine them into a megascale (alpha = .45) which I use to represent social change. You can see in the figure that successive cohorts of respondents are moving up this scale, on average. Note that these cohorts are interviewed at different points in time; for example, a 40-year-old in 1992 is in the same cohort as a 50-year-old in 2002, while the 1977 interviews cover people born all the way back to 1910. That’s how I get so many cohorts out of interviews from just 1977 to 2018 (and why the confidence intervals get bigger for recent cohorts).

The question from this figure is whether the cohort attitude trend would be well served by some strategic cutpoints to denote cohorts (“generations” not in the reproductive sense but in the sense of people born around the same time). Treating each birth year as separate is unwieldy, and the samples are small. We could just use decades of birth, or Pew’s arbitrary “generations.” Or make up new ones, which is what I’m testing out.

So I hit on a simple way to identify cutpoints using an exploratory technique known as k means clustering. This is a simple (with computers) way to identify the most logical groups of people in a dataset. In this case I used two variables: the megascale and birth year. Stata’s k means clustering algorithm then tries to find a set of groups of cases such that the differences within them (how far each case is from the means of the two variables within the group) are as small as possible. (You tell it k, the number of groups you want.) Because cohort is a continuous variable, and megascale rises over time, the algorithm happily puts people in clusters that don’t have overlapping birth years, so I get nicely ordered cohorts. I guess for a U-shaped time pattern it would put young and old people in the same groups, which would mess this up, but that’s not the case with this pattern.

I tested 5, 6, and 7 groups, thinking more or fewer than that would not be worth it. It turns out 6 groups had the best explanatory power, so I used those. Then I did five linear regressions with the megascale as the dependent variable, a handful of control variables (age, sex, race, region, and education), and different cohort indicators. My basic check of fit is the adjusted R2, or the amount of variance explained adjusted for the number of variables. Here’s how the models did, in order from worst to best:

Cohort variable(s)Adjusted R2
Pew generations.1393
One linear cohort variable.1400
My cluster categories.1423
Decades of birth.1424
Each year individually.1486

Each year is good for explaining variance, but too cumbersome, and the Pew “generations” were the worst (not surprising, since they weren’t concocted to answer this question — or any other question). My cluster categories were better than just entering birth cohort as a single continuous variable, and almost as good as plain decades of birth. My scheme is only six categories, which is more convenient than nine decades, so I prefer it in this case. Note I am not naming them, just reporting the birth-year clusters: 1910-1924, 1925-1937, 1938-1949, 1950-1960, 1961-1974, and 1975-1999. These are temporary and exploratory — if you used different variables you’d get different cohorts.

Here’s what they look like with my social change indicators:

Shown this way, you can see the different pace and timing of change for the different indicators — for example, gender attitudes changed most dramatically for cohorts born before 1950, the falling confidence in institutions was over by the end of the 1950s cohort, and the most recent cohort shows the greatest spike in religious never-nones. Social change is fascinating, complex, and uneven!

You can also see that the cuts I’m using here look nothing like Pew’s, which, for example, pool the Baby Boomers from birth years 1946-1964, and Millennials from 1980 to 1996. And they don’t fit some stereotypes you hear. For example, the group with the least confidence in major institutions is those born in the 1950s (a slice of Baby Boomers), not Millennials. Try to square these results with the ridiculousness that Chuck Todd recently offered up:

So the promise of American progress is something Millennials have heard a lot about, but they haven’t always experienced it personally. … And in turn they have lost confidence in institutions. There have been plenty of scandals that have cost trust in religious institutions, the military law enforcement, political parties, the banking system, all of it, trust eroded.

You could delve into the causes of trust erosion (I wrote a paper on confidence in science alone), but attributing a global decline in trust to a group called “Millennials,” one whose boundaries were declared arbitrarily, without empirical foundation, for a completely unrelated purpose, is uninformative at best. Worse, it promotes uncritical, determinist thinking, and — if it gets popular enough — encourages researchers to use the same meaningless categories to try to get in line with the pop culture pronouncements. You get lots of people using unscrutinized categories, compounding their errors. Social scientists have to do better, by showing how cohorts and life course events really are an important way to view and comprehend social change, rather than a shallow exercise in stereotyping.

Conclusion

The categories I came up with here, for which there is some (albeit slim) empirical justification, may or may not be useful. But it’s also clear from looking at the figures here, and the regression results, that there is no singularly apparent way to break down birth cohorts to understand these trends. In fact, a simple linear variable for year of birth does pretty well. These are sweeping social changes moving through a vast, interconnected population over a long time. Each birth cohort is riven with major disparities, along the stratifying lines of race/ethnicity, gender, and social class, as well as many others. There may be times when breaking people down into birth cohorts helps understand and explain these patterns, but I’m pretty sure we’re never going to find a single scheme that works best for different situations and trends. The best practice is probably to look at the trend in as much detail as possible, to check for obvious discontinuities, and then, if no breaks are apparent, use an “empty” category set, such as decades of birth, at least to start.

It will take a collective act of will be researchers. teachers, journalists, and others, to break our social change trend industry of its “generations” habit. If you’re a social scientist, I hope you’ll help by signing the letter. (I’m also happy to support other efforts besides this experts letter.)


Note on causes

Although I am talking about cohorts, and using regression models where cohort indicators are independent variables, I’m not assessing cohort effects in the sense of causality, but rather common experiences that might appear as patterns in the data. We often experience events through a cohort lens even if they are caused by our aging, or historical factors that affect everyone. How to distinguish such age, period, or cohort effects in social change is an ongoing subject of tricky research (see this from Morgan and Lee for a recent take using the GSS) , but it’s not required to address the Pew “generations” question: are there meaningful cohorts that experience events in a discernibly collective way, making them useful groups for social analysis.

Open letter to the Pew Research Center on generation labels

I posted a draft of this, with a discursive preamble, yesterday. To see all the posts on generations, here’s the tag.

Sign the letter here.

We are demographers and other social scientists, writing to urge the Pew Research Center to stop using its generation labels (currently: Silent, Baby Boom, X, Millennial, Z). We appreciate Pew’s surveys and other research, and urge them to bring this work into better alignment with scientific principles of social research.

  1. Pew’s “generations” cause confusion.

The groups Pew calls Silent, Baby Boom, X, Millennial, and Z are birth cohorts determined by year of birth, which are not related to reproductive generations. There is further confusion because their arbitrary lengths (18, 19, 16, 16, and 16 years, respectively) have grown shorter as the age difference between parents and their children has lengthened.

  1. The division between “generations” is arbitrary and has no scientific basis.

With the exception of the Baby Boom, which was a discrete demographic event, the other “generations” have been declared and named on an ad hoc basis without empirical or theoretical justification. Pew’s own research conclusively shows that the majority of Americans cannot identify the “generations” to which Pew claims they belong. Cohorts should be delineated by “empty” periods (such as individual years, equal numbers of years, or decades) unless research on a particular topic suggests more meaningful breakdowns.

  1. Naming “generations” and fixing their birth dates promotes pseudoscience, undermines public understanding, and impedes social science research.

The “generation” names encourage assigning them a distinct character, and then imposing qualities on diverse populations without basis, resulting in the current widespread problem of crude stereotyping. This fuels a stream of circular debates about whether the various “generations” fit their associated stereotypes, which does not advance public understanding.

  1. The popular “generations” and their labels undermine important cohort and life course research

Cohort analysis and the life course perspective are important tools for studying and communicating social science. But the vast majority of popular survey research and reporting on the “generations” uses cross-sectional data, and is not cohort research at all. Predetermined cohort categories also impede scientific discovery by artificially imposing categories used in research rather than encouraging researchers to make well justified decisions for data analysis and description. We don’t want to discourage cohort and life course thinking, we want to improve it.

  1. The “generations” are widely misunderstood to be “official” categories and identities

Pew’s reputation as a trustworthy social research institution has helped fuel the false belief that the “generations” definitions and labels are social facts and official statistics. Many other individuals and organizations use Pew’s definitions in order to fit within the paradigm, compounding the problem and digging us deeper into this hole with each passing day.

  1. The “generations” scheme has become a parody and should end.

With the identification of “Generation Z,” Pew has apparently reached the end of the alphabet. Will this continue forever, with arbitrarily defined, stereotypically labeled, “generation” names sequentially added to the list? Demographic and social analysis is too important to be subjected to such a fate. No one likes to be wrong, and admitting it is difficult. We sympathize. But the sooner Pew stops digging this hole, the easier it will be to escape. A public course correction from Pew would send an important signal and help steer research and popular discourse around demographic and social issues toward greater understanding. It would also greatly enhance Pew’s reputation in the research community. We urge Pew to end this as gracefully as possible — now.

As consumers of Pew Research Center research, and experts who work in related fields ourselves, we urge the Pew Research Center to do the right thing and help put an end to the use of arbitrary and misleading “generation” labels and names.

Draft: Open letter to the Pew Research Center on generation labels

This post has been updated with the final signing statement and a link to the form. Thanks for sharing!

I have objected to the use of “generation” divisions and names for years (here’s the tag). Then, the other day, I saw this introduction to an episode of Meet the Press Reports, which epitomized a lot of the gibberishy nature of generationspeak (sorry about the quality).

OK, it’s ridiculous political punditry — “So as their trust in institutions wanes, will they eventually coalesce behind a single party, or will they be the ones to simply transform our political system forever?” — but it’s also generations gobbledygook. And part of what struck me was this: “millennials are now the largest generation, they have officially overtaken the Baby Boom.” Well-educated people think these things are real things, official things. We have to get off this train.

If you know the generations discourse, you know a lot of it emanates from the Pew Research Center. They do a lot of excellent research — and make a lot of that research substantially worse by cramming into the “generations” framework that they more than anyone else have popularized — have made “official.”

After seeing that clip, I put this on Twitter, and was delighted by the positive response:

So I wrote a draft of an open letter to Pew, incorporating some of the comments from Twitter. But then I decided the letter was too long. To be more effective maybe it should be more concise and less ranty. So here’s the long version, which has more background information and examples, followed by a signing version, with a link to the form to sign it. Please feel to sign if you are a demographer or other social scientist, and share the link to the form (or this post) in your networks.

Maybe if we got a lot of signatories to this, or something like it, they would take heed.


Preamble by me

Pew’s generation labels — which are widely adopted by many other individuals and institutions — encourage unhelpful social science communication, driving people toward broad generalizations, stereotyping, click bait, sweeping character judgment, and echo chamber thinking. When people assign names to generations, they encourage anointing them a character, and then imposing qualities onto whole populations without basis, or on the basis of crude stereotyping. This fuels a constant stream of myth-making and myth-busting, with circular debates about whether one generation or another fits better or worse with various of its associated stereotypes. In the absence of research about whether the generation labels are useful either scientifically or in communicating science, we are left with a lot of headlines drawing a lot of clicks, to the detriment of public understanding.

Cohort analysis and the life course perspective are important tools for studying and communicating social science. We should study the shadow, or reflection, of life events across people’s lives at a cultural level, not just an individual level. In fact, the Pew Research Center’s surveys and publications make great contributions to that end. But the vast majority of popular survey research and reporting in the “generations” vein uses data analyzed by age, cross-sectionally, with generational labels applied after the fact — it’s not cohort research at all. We shouldn’t discourage cohort and life course thinking, rather we should improve it.

Pew’s own research provides a clear basis for scrapping the “generations.” “Most Millennials Resist the ‘Millennial’ Label” was the title of a report Pew published in 2015. This is when they should have stopped — based on their own science — but instead they plowed ahead as if the “generations” were social facts that the public merely failed to understand.

This figure shows that the majority of Americans cannot correctly identify the generational label Pew has applied to them.

The concept of “generations” as applied by Pew (and many others) defies the basic reality of generations as they relate to reproductive life cycles. Pew’s “generations” are so short (now 16 years) that they bear no resemblance to reproductive generations. In 2019 the median age of a woman giving birth in the U.S. was 29. As a result, many multigenerational families include no members of some generations on Pew’s chart. For example, it asks siblings (like the tennis-champion Williams sisters, born one year apart) to identify as members of separate generations.

Perhaps due to their ubiquitous use, and Pew’s reputation as a trustworthy arbiter of social knowledge, many people think these “generations” are official facts. Chuck Todd reported on NBC News just this month, “Millennials are now the largest generation, they have officially overtaken the Baby Boom.” (NPR had already declared Millennials the largest generation seven years earlier, using a more expansive definition.) Pew has perhaps inadvertently encouraged these ill-informed perspectives, as when, for example, Richard Fry wrote for Pew, “Millennials have surpassed Baby Boomers as the nation’s largest living adult generation, according to population estimates from the U.S. Census Bureau” — despite the fact that the Census Bureau report referenced by the article made no mention of generations. Note that Chuck Todd’s meaningless graphic, which doesn’t even include ages, is also falsely attributed to the U.S. Census Bureau.

Generations are a beguiling and appealing vehicle for explaining social change, but one that is more often misleading than informative. The U.S. Army Research Institute commissioned a consensus study report from the National Academies, titled, Are Generational Categories Meaningful Distinctions for Workforce Management? The group of prominent social scientists concluded: “while dividing the workforce into generations may have appeal, doing so is not strongly supported by science and is not useful for workforce management. …many of the stereotypes about generations result from imprecise use of the terminology in the popular literature and recent research, and thus cannot adequately inform workforce management decisions.”

As one of many potential examples of such appealing, but ultimately misleading, uses of the “Millennial” generation label, consider a 2016 article by Paul Taylor, a former executive vice president of the Pew Research Center. He promised he would go beyond “clichés” to offer “observations” about Millennials — before describing them as “liberal lions…who might not roar,” “downwardly mobile,” “unlaunched,” “unmarried,” “gender role benders,” “upbeat,” “pre-Copernican,” and as an “unaffiliated, anti-hierarchical, distrustful” generation who nevertheless “get along well with their parents, respect their elders, and work well with colleagues” while being “open to different lifestyles, tolerant of different races, and first adopters of new technologies.” And their “idealism… may save the planet.”

In 2018 Pew announced that it would henceforth draw a line between “Millennials” and “Generation Z” at the year 1996. And yet they offered no substantive reason, just that “it became clear to us that it was time to determine a cutoff point between Millennials and the next generation [in] order to keep the Millennial generation analytically meaningful, and to begin looking at what might be unique about the next cohort.” In asserting that “their boundaries are not arbitrary,” the Pew announcement noted that they were assigning the same length to the Millennial Generation as they did to Generation X — both 16 years, a length that bears no relationship to reproductive generations, nor to the Baby Boom cohort, which is generally considered to be 19 years (1946-1964).

The essay that followed this announcement attempted to draw distinctions between Millennials and Generation Z, but it could not delineate a clear division, because none can be drawn. For example, it mentioned that “most Millennials came of age and entered the workforce facing the height of an economic recession,” but in 2009, the trough year for that recession, Millennials by Pew’s definition ranged from age 13 to 29. The other events mentioned — the 9/11 terrorist attacks, the election of Barack Obama, the launch of the iPhone, and the advent of social media — similarly find Millennials at a range of ages too wide to be automatically unifying in terms of experience. Why is being between 12 and 28 at the time of Obama’s election more meaningful a cohort experience than being, say, 18 to 34? No answer to this is provided, because Pew has determined the cohort categories before the logical scientific questions can be asked.

Consider a few other hypothetical examples. In the future, we might hypothesize that those who were in K-12 school during the pandemic-inflicted 2020-2021 academic year constitute a meaningful cohort. That 13-year cohort was born between 2003 and 2015, which does not correspond to one of Pew’s predetermined “generations.” For some purposes, an even narrower range might be more appropriate, such as those who graduated high school in 2020-2021 alone. Under the Pew generational regime, too many researchers, marketers, journalists, and members of the general public will look at major events like these through a pre-formed prism that distorts their ability to pursue or understand the way cohort life course experiences affect social experience.

Unlike the other “generations” in Pew’s map, the Baby Boom corresponds to a unique demographic event, painstakingly, empirically demonstrated to have begun in July 1946 and ended in mid-1964. And being part of that group has turned out to be a meaningful experience for many people — one that in fact helped give rise to the popular understanding of birth cohorts as a concept. But it does not follow that any arbitrarily grouped set of birth dates would produce a sense of identity, especially one that can be named and described on the basis of its birth years alone. It is an accident of history that the Baby Boom lasted 18 years — as far as we know having nothing to do with the length of a reproductive generation, but perhaps leading subsequent analysts to use the term “generation” to describe both Baby Boomers and subsequent cohorts.

The good researchers at Pew are in a tough spot (as are others who rely on their categories). The generations concept is tremendously appealing and hugely popular. But where does it end? Are we going to keep arbitrarily dividing the population into generations and giving them names — after “Z”? On what scientific basis would the practice continue? One might be tempted to address these problems by formalizing the process, with a conference and a dramatic launch, to make it even more “official.” But there is no scientific rationale for dividing the population arbitrarily into cohorts of any particular length for purposes of analyzing social trends, and to fix their membership a priori. Pew would do a lot more to enhance its reputation, and contribute to the public good, by publicly pulling the plug on this project.


Open letter to the Pew Research Center on generation labels

Sign the letter here.

We are demographers and other social scientists, writing to urge the Pew Research Center to stop using its generation labels (currently: Silent, Baby Boom, X, Millennial, Z). We appreciate Pew’s surveys and other research, and urge them to bring this work into better alignment with scientific principles of social research.

  1. Pew’s “generations” cause confusion.

The groups Pew calls Silent, Baby Boom, X, Millennial, and Z are birth cohorts determined by year of birth, which are not related to reproductive generations. There is further confusion because their arbitrary lengths (18, 19, 16, 16, and 16 years, respectively) have grown shorter as the age difference between parents and their children has lengthened.

  1. The division between “generations” is arbitrary and has no scientific basis.

With the exception of the Baby Boom, which was a discrete demographic event, the other “generations” have been declared and named on an ad hoc basis without empirical or theoretical justification. Pew’s own research conclusively shows that the majority of Americans cannot identify the “generations” to which Pew claims they belong. Cohorts should be delineated by “empty” periods (such as individual years, equal numbers of years, or decades) unless research on a particular topic suggests more meaningful breakdowns.

  1. Naming “generations” and fixing their birth dates promotes pseudoscience, undermines public understanding, and impedes social science research.

The “generation” names encourage assigning them a distinct character, and then imposing qualities on diverse populations without basis, resulting in the current widespread problem of crude stereotyping. This fuels a stream of circular debates about whether the various “generations” fit their associated stereotypes, which does not advance public understanding.

  1. The popular “generations” and their labels undermine important cohort and life course research

Cohort analysis and the life course perspective are important tools for studying and communicating social science. But the vast majority of popular survey research and reporting on the “generations” uses cross-sectional data, and is not cohort research at all. Predetermined cohort categories also impede scientific discovery by artificially imposing categories used in research rather than encouraging researchers to make well justified decisions for data analysis and description. We don’t want to discourage cohort and life course thinking, we want to improve it.

  1. The “generations” are widely misunderstood to be “official” categories and identities

Pew’s reputation as a trustworthy social research institution has helped fuel the false belief that the “generations” definitions and labels are social facts and official statistics. Many other individuals and organizations use Pew’s definitions in order to fit within the paradigm, compounding the problem and digging us deeper into this hole with each passing day.

  1. The “generations” scheme has become a parody and should end.

With the identification of “Generation Z,” Pew has apparently reached the end of the alphabet. Will this continue forever, with arbitrarily defined, stereotypically labeled, “generation” names sequentially added to the list? Demographic and social analysis is too important to be subjected to such a fate. No one likes to be wrong, and admitting it is difficult. We sympathize. But the sooner Pew stops digging this hole, the easier it will be to escape. A public course correction from Pew would send an important signal and help steer research and popular discourse around demographic and social issues toward greater understanding. It would also greatly enhance Pew’s reputation in the research community. We urge Pew to end this as gracefully as possible — now.

As consumers of Pew Research Center research, and experts who work in related fields ourselves, we urge the Pew Research Center to do the right thing and help put an end to the use of arbitrary and misleading “generation” labels and names.

In the war between armed police and the unarmed public, the police should unilaterally disarm.

Modified photo from Chris Yarzab: https://flic.kr/p/8bjkUo

One thing Duante Wright, Philando Castile, Walter Scott, Samuel DeBose, and Rayshard Brooks, have in common is that the police who killed them could have accomplished whatever they were legitimately supposed to be doing without a gun on their hip. The police in these incidents had no reason to anticipate violence in the interactions. There was no report of a violent crime, no weapons visible, no sign of anyone in imminent danger. Whether you think the police acted with racist malice, incompetence, or even reasonably, the fact is that if the police who killed them weren’t carrying guns no one would have died.

The structural approaches to police violence introduced in the last year, including reducing police funding to replace them with other agencies and services, involve big, complex proposals. For example, a recent law review article by Jordan Blair Woods reasonably suggests replacing police with unarmed civilian enforcers of traffic codes. These would require changing laws and restructuring government budgets.

A much simpler and immediately effective remedy to at least some of our problem is a simple matter of police department policy: don’t wear your guns.

Whether it was poor training, racism, malice, or just fatally bad luck that led Kimberly Potter to shoot Duante Wright with her gun instead of her Taser in Booklyn Center, Minnesota earlier this month, the body camera recording clearly shows she had nothing in her hands just seconds earlier. She didn’t enter the scene with her gun out because there was no reason to suspect violence, and in fact the only violence that occurred was her shooting Wright. If she hadn’t had a gun on her hip, he wouldn’t have died.

For all the talk of “de-escalation” in police interactions with the public, this simple solution is routinely overlooked. In any potentially violent conflict, the stakes are automatically raised to the level of the deadliest weapon present. Guns escalate conflict.

The policy details are important. In a society awash in guns (unlike many of those where police are usually unarmed), police here will sometimes need them for good reasons. You could start with some units dedicated to traffic enforcement, for example. Some police could have guns in a safe in the trunk of their car. Special units could be routinely armed. But the officers who come to your (my) house to discuss online death threats don’t need to be wearing firearms.

There are risks to police from such an approach, but the present default unreasonably assumes that carrying guns only reduces those risks. How often are unarmed police killed at traffic stops? If we don’t know the answer to that, maybe it hasn’t been sufficiently tried. If your response is, “one traffic cop killed is too many,” try applying that logic to the unarmed victims of police.

Even if you believe Darren Wilson, who said Michael Brown tried to take his gun in Ferguson, Missouri in 2014, possession of the gun was the basis of their violent conflict. Even if Darren Wilson had been just as racist in harassing Brown for walking in the street, no one would have died if Wilson hadn’t had a gun.

A Justice Department report on Michael Brown’s death noted, “Under well-established Fourth Amendment precedent, it is not objectively unreasonable for a law enforcement officer to use deadly force in response to being physically assaulted by a subject who attempts to take his firearm.” Well-established, perhaps, but that’s tragically circular – cop has a right to kill someone with his gun who tries to take his gun – because he has a gun.

If Duante Wright or Michael Brown or George Floyd had resisted arrest, punched an officer, or driven off to escape law enforcement, no one would have died. But that’s not all that would be different. If police in those situations, and millions of others, weren’t carrying guns, we could develop a new mutual understanding between the police and public: Police won’t “accidentally” kill you during a traffic stop or when reacting to nonviolent infractions, but if you do attack unarmed police, more police will show up later and they will have reason to be armed.

What might seem riskier to police upfront – leaving the gun in the trunk, or at the station – would certainly lead to fewer deaths of innocent, unarmed, nonviolent, people. Given the scale of innocent life taken in such incidents, and its effects on relations between the public and the police, that is a paramount concern for equity, civil rights, and law enforcement. But by reducing the stakes of individual interactions with police – automatically de-escalating them – it would probably also end up making the job safer for police as well.

Policing is dangerous work, work the police make more dangerous by introducing firearms into many interactions that should remain nonviolent. Would removing the holster from the standard uniform discourage people from becoming police? To some extent it might. But if not wearing a gun discouraged the kind of person for whom wearing a gun is the best part of the job, so much the better.

In the war between armed police and the unarmed public, the police should unilaterally disarm.

Citizen Scholar: new book under contract

PN Cohen photo

My new book, Citizen Scholar, is under contract with Columbia University Press (thanks to the support of editor, and Editorial Director, Eric Schwartz).

Some of the writing I’ve been doing here is part of the book’s development, including the piece on “policy implications,” essays on transparency and accountability in research, as well as talks and materials about preprints, open science and the pandemic, politics and science, and others. It’s time for a book (and also more talks, if you’d like to invite me!). I will post essays and excerpts as I go, here, and I welcome your critiques, suggestions, and ideas. The first post describes my ambitions, and plan, for the book.

I love Family Inequality and everyone here but it seemed awkward to repeatedly post stuff for the new book under this heading. So I set up a blog style page, and I’ll post links here, too (and I’ll figure out you can subscribe, for those who want their blog posts via email).

Wish me luck!